Features of structural, thermal and electrical properties of Mo-based composite materials as fuel electrodes for high-temperature applications

2017 ◽  
Vol 705 ◽  
pp. 854-861 ◽  
Author(s):  
L.S. Skutina ◽  
A.I. Vylkov ◽  
D.A. Medvedev ◽  
E.A. Filonova
2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000148-000153
Author(s):  
Kenneth P. Dowhower

Abstract The electrical interconnect is an essential component of most electrical system configurations. The ability of the interconnect interface to reliably transmit power and / or data throughout the system is critical to its overall performance. Degradation of the mechanical or electrical properties of the interface can reduce the system performance or in severe cases, make it inoperable. There are several factors which can inhibit the performance of the interconnect, one of most severe is long term exposure to elevated temperatures. This effect can also be accelerated when combined with other severe environmental conditions such as high vibration and physical shock, which are often found in down hole oil and gas well drilling applications. This type of exposure can significantly degrade the essential properties of a reliable electrical interface such as contact resistance, mechanical stability, and electrical isolation. This paper will present options for design features and material properties that can be incorporated into an interconnect design that will mitigate these adverse effects. Specifically, this paper addresses the material properties of the contact interface and its surface treatment, the mechanical and electrical properties of the insulating material, the robustness of the mating features and the contact retention system. Two key features of the contact interface that are discussed are the stability of its electrical resistance and the robustness of its mechanical retention. Long term exposure to high temperatures typically induces stress relaxation in the compliant members of the contact interface that are required to produce a stable, low resistance interface, while allowing for a high level of mate / unmate durability. Stress relaxation can also reduce the mechanical stability of the contact interface where metal or plastic retention features are utilized. In the case of retention through epoxy bonding, imparting thermal stress at the bonding surface can result in loss of adhesion and / or retention. The surface treatment of the contact interface has also been shown to be a contributing factor in its electrical stability in high temperature applications. Typically, the interface is plated with a hard gold over nickel finish, which provides a noble interface that is corrosion resistant, but with the hardness required to withstand many mate / unmate cycles. A small percentage of nickel or cobalt are typically alloyed with the gold to produce the required hardness. In most applications, it has minimal impact on the overall resistance of the contact interface. In high temperature applications, however, it can tend to diffuse through the gold to the contact interface. Since these materials have a higher resistivity, they can negatively affect the resistance of the interface. The impact of this effect is reviewed in this paper. Finally, results of the evaluations on high temperature insulating materials and bonding epoxies are presented in this paper. The mechanical and dielectric stability of the insulating materials and the adhesion properties of the epoxy used for contact retention were the primary concerns for their evaluation. The verification tests that included at temperature exposure were conducted at +260°C to simulate extreme use cases for most down hole applications.


2019 ◽  
Vol 889 ◽  
pp. 65-70
Author(s):  
Thai Hung Le ◽  
Hien Trang Nguyen

Bulk moulding compounds (BMCs) are composite materials of thermosetting polymer matrix reinforced by short glass fibers. BMCs have known as the alternative of the traditional materials thanks to their optimal properties such as lightweight, durability, corrosion under certain environment, formable, high electrical resistance... The previous study mentioned the process of manufacturing composite materials BMCs from unsaturated polyester resin reinforced with short glass fiber and CaCO3 filler by Z axis mixer and applying in the circuit breaker bottom, [1, 2]. To improve the thermal resistance of BMCs under high temperature condition in the industry, in this research, alumina filler was added to investigate the influence of alumina with the different content of 15wt.% and 20wt.% on the mechanical, thermal and electrical properties of BMCs. Specimens manufactured with and without alumina filler content were compared. The results show clearly that adding alumina could improve the thermal properties whereas this might decrease the tensile strength of BMCs. The experimental results also indicated the influence of mass fraction of alumina filler content on properties of BMCs.


Author(s):  
Azmi Ibrahim ◽  
Rosidah Alias ◽  
Zulkifli Ambak ◽  
Mohd Zulfadli Mohamed Yusoff ◽  
Sabrina Mohd Shapee ◽  
...  

2014 ◽  
Vol 659 ◽  
pp. 22-27 ◽  
Author(s):  
Marian Bastiurea ◽  
Magdalena Silvia Rodeanu ◽  
Dumitru Dima ◽  
Monica Murarescu ◽  
Gabriel Andrei

Graphenes have aroused great interest among the scientists lately, due to their special physical properties which are supposed to be transferred to composite materials [1,2,3,6]. Some polymers show low mechanical properties which can be improved by adding various types of materials [9,13]. Using nanoparticles, an enhancement of mechanical, thermal and electrical properties can be obtained, even for small contents of additives [10,11,12,14,15,16]. The evaluation of mechanical properties of polymer composites with graphene can be achieved relying on the three-point bending tests [4]. This work presents a few conclusions resulting from the three points bending tests of the polyester composites with graphene and graphite [7,8].


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Sign in / Sign up

Export Citation Format

Share Document