scholarly journals Role of homogeneous distribution of SiC reinforcement on the characteristics of stir casted Al–SiC composites

2021 ◽  
Vol 869 ◽  
pp. 159250 ◽  
Author(s):  
M. Saravana Kumar ◽  
S. Rashia Begum ◽  
C.I. Pruncu ◽  
Mehdi Shahedi Asl
1991 ◽  
Vol 115 (5) ◽  
pp. 1267-1274 ◽  
Author(s):  
S Eliott ◽  
P H Vardy ◽  
K L Williams

While the role of myosin II in muscle contraction has been well characterized, less is known about the role of myosin II in non-muscle cells. Recent molecular genetic experiments on Dictyostelium discoideum show that myosin II is necessary for cytokinesis and multicellular development. Here we use immunofluorescence microscopy with monoclonal and polyclonal antimyosin antibodies to visualize myosin II in cells of the multicellular D. discoideum slug. A subpopulation of peripheral and anterior cells label brightly with antimyosin II antibodies, and many of these cells display a polarized intracellular distribution of myosin II. Other cells in the slug label less brightly and their cytoplasm displays a more homogeneous distribution of myosin II. These results provide insight into cell motility within a three-dimensional tissue and they are discussed in relation to the possible roles of myosin II in multicellular development.


2021 ◽  
Vol 1 (2) ◽  
pp. 99-104
Author(s):  
Iman FarahBakhsh ◽  
Riccarda Antiochia ◽  
Ho Won Jang

This research is dedicated to the role of different amounts of hexagonal BN (hBN: 0, 1.5, 3, and 4.5 wt%) on the pressureless sinterability of ZrB2–25 vol% SiC ceramics. Phenolic resin (5 wt%) with a carbon yield of ~40 % was incorporated as a binder to the powder mixtures and after initial cold pressing, the final sintering process was performed at 1900 °C for 100 min in a vacuum furnace. The as-sintered specimens were characterized by X-ray diffractometry, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results disclosed that the incorporation of 1.5 wt% hBN could increase the relative density to ~92%, while the sample with zero hBN content just reached ~81% of full densification. Appropriate hBN content not only facilitated the particle rearrangement during the cold pressing, but also removed the harmful oxide impurities during the final sintering. Nevertheless, the addition of higher amounts of hBN remarkably lessened the densification because of more delamination of the non-reacted hBN flakes and release and entrapment of more gaseous by-products induced by the reacted hBN phases.


1995 ◽  
Vol 410 ◽  
Author(s):  
W. Kowbel ◽  
H. T. Tsou ◽  
C. A. Bruce ◽  
J. C. Withers

ABSTRACTNicalon fiber is the primary reinforcement in SiC-SiC composites currently produced by a variety of techniques including CVI and polymer infiltration. Low strength retention and dimensional change at high temperatures of the Nicalon fibers limits the choice of manufacturing processes which can be employed to produce low cost SiC-SiC composites. MER has developed a SiC reinforcement based upon the conversion of low cost carbon fabric to SiC via a Chemical Vapor Reaction (CVR) process. These new SiC filaments exhibit excellent creep resistance at temperatures up to 1600°C. SiC-SiC composites were fabricated using different types of graphite fabric converted to SiC fabric utilizing the CVR process combined with a polycarbosilane (PCS) infiltration and CVI densification. In addition, enhancement of the composite through-the-thickness thermal conductivity was accomplished via boron doping of the matrix. A correlation between processing conditions, microstructure and properties of the SiC-SiC composites will be presented.


2006 ◽  
Vol 15 (3) ◽  
pp. 096369350601500
Author(s):  
Xiulan He ◽  
Yuguang Dai ◽  
Yinggui Guo ◽  
Yu Zhou ◽  
Dechang Jia

Short-carbon-fibre-reinforced SiC composites were prepared by precursor pyrolysis-hot pressing with Polycarbosilane (PCS) as precursor polymer and MgO-Al2O3-Y2O3 as sintering additives. The effects of PCS content on microstructures and mechanical properties of the composites were investigated. The results showed that, the composites could be densified at a relatively low temperature of 1800? via the liquid-phase-sintering mechanism and the highest mechanical property was obtained for the composites with 20wt. % PCS content. During sintering, Y2O3, Al2O3 reacted with the pyrolysis products from PCS and formed amorphous interphase, which was benefit of densification of the composites and avoidance of degeneration of the carbon fibres. The nano PCS-derived SiC almost lied on the surface of the particle of starting powder β-SiC, which could play a role of filling up the void and improve the relative density of the composites.


2019 ◽  
Vol 11 (2) ◽  
pp. 277-285
Author(s):  
Rajesh Kumar Bhushan ◽  
Deepak Sharma

Purpose Sound microstructure components are necessary for reliability and safety; hence, these components are used in aircraft, satellite, automobiles and ships, where many commercial alloys are not suitable. The paper aims to discuss this issue. Design/methodology/approach AA6082/Si3N4 and AA6082/SiC composites were fabricated using the stir-casting process considering 5, 10 and 15 vol.% of reinforcement particles. Density and porosity of AA6082/Si3N4 and AA6082/SiC composites were calculated. Characterization was done using an X-ray (EDX) detector, attached to SEM. The effect of addition of Si3N4 and SiC particulates in the AA6082 was investigated. Findings Results showed that Si3N4 and SiC particulates had good wettability with AA6082 and were uniformly distributed in AA6082 matrix. No adverse effects of reactions were noticed in the microstructure of AA6082/Si3N4 and AA6082/SiC composites. Research limitations/implications AA6082 with more than 15 vol.% of Si3N4 and AA6082/SiC reinforcement particles do not find industrial application where high hardness and tensile strength are required. Practical implications Components made from AA6082/Si3N4 and AA6082/SiC composites find their application where high hardness with better tensile strength is required. Social implications Naturally and locally available materials are utilized for fabrication. Originality/value Little work is available in the literature on fabrication and characterization of AA6082/Si3N4 and AA6082/SiC composites. The authors have identified the process parameters at which proper fabrication is done and sound microstructure is obtained.


Sign in / Sign up

Export Citation Format

Share Document