Effects of Hyper-High-Temperature Solid-Solution Treatment on Microstructure Evolution and Nanoprecipitation of the Al-Ni-Cu-Fe-Zr-Sc Alloy Manufactured by Selective Laser Melting

2021 ◽  
pp. 160781
Author(s):  
Kai-Chieh Chang ◽  
Jun-Ren Zhao ◽  
Fei-Yi Hung
2011 ◽  
Vol 335-336 ◽  
pp. 566-570
Author(s):  
Hong Pu Zhao ◽  
Shun Xing Wang

Effect of solid solution treatment on corrosive behavior of 00Cr26Ni5Mo2Cu3Re Duplex Stainless Steel in static stage of HNO3+HF acid solution is studied in the paper.The results show that the corrosion between phases and pitting corrosion on ferrite are serious at low temperature ,the phenomenon gradually disappear with the solid solution temperature rising ; the corrosive resistance of 00Cr26Ni5Mo2Cu3Re is getting better first and then decrease with solution temperature at high temperature, the best corrosive resistance temperature is at 1050°C.


2016 ◽  
Vol 879 ◽  
pp. 318-323
Author(s):  
Hui Qin Chen ◽  
Kun Zhang ◽  
Xiao Dong Zhao

Two intermediate thermal mechanical treatment (ITMT) Processes were designed for investigation the influence of multi-scale precipitated particles on microstructure evolution during thermo-mechanical processing of Al-7.6Zn-1.5Mg-1.75Cu-0.12Zr alloy by hot compressive experiments and microstructure testing of OM and EBSD. It is found that the size and distribution of precipitated particles preprocessed by over-aging at 400°C for14h can meet the particle stimulated nucleation of recrystallization. Refined and uniform grains present in the sample after hot deformation at about 20 of LnZ up to 80% reduction and subsequent final solid solution treatment. But for samples preprocessed by solid solution at 435°C for 2h and aging at 200°C for 12h, Refined uniform recrystallized grains or recovery sub-grains in elongated grains present in the samples after hot deformation at about 25 of LnZ up to 60% reduction followed by annealing at 350°C for 0.5h and final solution treatment.


2015 ◽  
Vol 816 ◽  
pp. 446-450
Author(s):  
Xiao Bing Zheng ◽  
Wen Bo Du ◽  
Ke Liu ◽  
Zhao Hui Wang ◽  
Shu Bo Li

The microstructure evolution of the Mg-3Zn-0.5Er-0.5Al (mass fraction, %) alloy under the different condition was investigated. The results showed that as-cast Mg-3Zn-0.5Er-0.5Al alloy mainly consisted of primary large irregular Mg4Zn7 phase and needlelike (Mg, Zn, Er, Al) quaternary phase. Mg4Zn7 phase almost dissolved into the matrix after solid solution treatment at 400 oC for 10 h, while the (Mg, Zn, Er, Al) quaternary phase still existed. The solution treated alloy was extruded at 250 °C. The ultimate tensile strength of the as-extruded alloy was approximately 268 MPa and the YTS was approximately 163 MPa companying with an elongation of 28%. The tensile strength of the as-extruded alloy improved obviously, which was mainly attributed to the grain refinement.


2016 ◽  
Vol 879 ◽  
pp. 1634-1638
Author(s):  
Tatsuaki Sakamoto ◽  
Shohei Otsuka ◽  
Sengo Kobayashi

Dynamic recrystallization in Ti-1100 was investigated. Ti-1100 is one of near α titanium alloys and contains Si for improving high temperature mechanical properties. Ti-1100 exhibits martensitic transformation by quenching into iced brine after solid solution treatment. Hereafter specimens subjected to quenching into iced brine and to cooling in air after solid solution treatment are called IBQ specimen and AC specimen, respectively. After tensile test at high temperature, IBQ specimen exhibits morphological change from lath structure to equiaxed structure, but AC specimen does not. It is indicated that dynamic recrystallization occurs during the tensile test of IBQ specimen. Effect of silicide on the dynamic recrystallization was investigated using two specimens: one included more silicide precipitates and the other less. The former specimen shows smaller recrystallized grains than the latter. It is indicated that the specimen including more silicides exhibits smaller recrystallized grains.


Author(s):  
Jonas Nitzler ◽  
Christoph Meier ◽  
Kei W. Müller ◽  
Wolfgang A. Wall ◽  
N. E. Hodge

AbstractThe elasto-plastic material behavior, material strength and failure modes of metals fabricated by additive manufacturing technologies are significantly determined by the underlying process-specific microstructure evolution. In this work a novel physics-based and data-supported phenomenological microstructure model for Ti-6Al-4V is proposed that is suitable for the part-scale simulation of laser powder bed fusion processes. The model predicts spatially homogenized phase fractions of the most relevant microstructural species, namely the stable $$\beta $$ β -phase, the stable $$\alpha _{\text {s}}$$ α s -phase as well as the metastable Martensite $$\alpha _{\text {m}}$$ α m -phase, in a physically consistent manner. In particular, the modeled microstructure evolution, in form of diffusion-based and non-diffusional transformations, is a pure consequence of energy and mobility competitions among the different species, without the need for heuristic transformation criteria as often applied in existing models. The mathematically consistent formulation of the evolution equations in rate form renders the model suitable for the practically relevant scenario of temperature- or time-dependent diffusion coefficients, arbitrary temperature profiles, and multiple coexisting phases. Due to its physically motivated foundation, the proposed model requires only a minimal number of free parameters, which are determined in an inverse identification process considering a broad experimental data basis in form of time-temperature transformation diagrams. Subsequently, the predictive ability of the model is demonstrated by means of continuous cooling transformation diagrams, showing that experimentally observed characteristics such as critical cooling rates emerge naturally from the proposed microstructure model, instead of being enforced as heuristic transformation criteria. Eventually, the proposed model is exploited to predict the microstructure evolution for a realistic selective laser melting application scenario and for the cooling/quenching process of a Ti-6Al-4V cube of practically relevant size. Numerical results confirm experimental observations that Martensite is the dominating microstructure species in regimes of high cooling rates, e.g., due to highly localized heat sources or in near-surface domains, while a proper manipulation of the temperature field, e.g., by preheating the base-plate in selective laser melting, can suppress the formation of this metastable phase.


Sign in / Sign up

Export Citation Format

Share Document