P3-065: THE BARNES MAZE TEST: A DRY LAND BEHAVIORAL TEST TO ANALYZE ALZHEIMER'S DISEASE MOUSE MODELS FOR SPATIAL LEARNING DEFICITS

2006 ◽  
Vol 14 (7S_Part_20) ◽  
pp. P1089-P1089
Author(s):  
Roland Rabl ◽  
Stephan Kurat ◽  
Iera Hernandez ◽  
Estibaliz Santiago-Mugica ◽  
Stefanie Flunkert ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Katharina L. Neumeister ◽  
Matthias W. Riepe

Background. Incipient Alzheimer's disease is often disguised as depressive disorder. Over the course of AD, depressive symptoms are even more frequent. Hence, treatment with antidepressants is common in AD. It was the goal of the present study to assess whether two common antidepressants with different mechanisms of action affect spatial learning in a transgenic animal model of Alzheimer's disease.Methods. We assessed spatial memory of male wild-type and B6C3-Tg(APPswe,PSEN1dE9)85Dbo (APP23) transgenic animals in a complex dry-land maze. Animals were treated with citalopram (10 mg/kg) and bupropion (20 mg/kg).Results. Moving and resting time until finding the goal zone decreased in 4.5-month-old sham-treated wild-type animals and, to a lesser extent, in APP23 animals. Compared with sham-treated APP23 animals, treatment with bupropion reduced resting time and increased speed. On treatment with citalopram, moving and resting time were unchanged but speed decreased. Length of the path to the goal zone did not change on either bupropion or citalopram.Conclusion. Bupropion increases psychomotor activity in APP23 transgenic animals, while citalopram slightly reduces psychomotor activity. Spatial learning per se is unaffected by treatment with either bupropion or citalopram.


2011 ◽  
Vol 121 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Mohsen Taghizadeh ◽  
Abolghassem Djazayery ◽  
Mahmoud Salami ◽  
Mohammad Reza Eshraghian ◽  
Sayyed Alireza Talaei Zavareh

2013 ◽  
Vol 106 ◽  
pp. 57-67 ◽  
Author(s):  
Chun-Ming Wang ◽  
Ming-Yan Liu ◽  
Fang Wang ◽  
Min-Jie Wei ◽  
Shuang Wang ◽  
...  

2021 ◽  
Vol 79 (4) ◽  
pp. 1701-1711
Author(s):  
Tetsuo Hayashi ◽  
Shotaro Shimonaka ◽  
Montasir Elahi ◽  
Shin-Ei Matsumoto ◽  
Koichi Ishiguro ◽  
...  

Background: Human tauopathy brain injections into the mouse brain induce the development of tau aggregates, which spread to functionally connected brain regions; however, the features of this neurotoxicity remain unclear. One reason may be short observational periods because previous studies mostly used mutated-tau transgenic mice and needed to complete the study before these mice developed neurofibrillary tangles. Objective: To examine whether long-term incubation of Alzheimer’s disease (AD) brain in the mouse brain cause functional decline. Methods: We herein used Tg601 mice, which overexpress wild-type human tau, and non-transgenic littermates (NTg) and injected an insoluble fraction of the AD brain into the unilateral hippocampus. Results: After a long-term (17–19 months) post-injection, mice exhibited learning deficits detected by the Barnes maze test. Aggregated tau pathology in the bilateral hippocampus was more prominent in Tg601 mice than in NTg mice. No significant changes were observed in the number of Neu-N positive cells or astrocytes in the hippocampus, whereas that of Iba-I-positive microglia increased after the AD brain injection. Conclusion: These results potentially implicate tau propagation in functional decline and indicate that long-term changes in non-mutated tau mice may reflect human pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document