P2-092: MRI ANALYSIS BY CHEMICAL EXCHANGE SATURATION TRANSFER SHOWS LOW CEREBRAL 2-DEOXY-D-GLUCOSE UPTAKE IN A MODEL OF ALZHEIMER'S DISEASE

2006 ◽  
Vol 14 (7S_Part_13) ◽  
pp. P703-P703
Author(s):  
Daniele Tolomeo ◽  
Edoardo Micotti ◽  
Sonia Colombo Serra ◽  
Anniina Snellman ◽  
Michael Chappel ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Anna Orzyłowska ◽  
Wendy Oakden

Alzheimer’s disease (AD) is one of the most common causes of dementia and difficult to study as the pool of subjects is highly heterogeneous. Saturation transfer (ST) magnetic resonance imaging (MRI) methods are quantitative modalities with potential for non-invasive identification and tracking of various aspects of AD pathology. In this review we cover ST-MRI studies in both humans and animal models of AD over the past 20 years. A number of magnetization transfer (MT) studies have shown promising results in human brain. Increased computing power enables more quantitative MT studies, while access to higher magnetic fields improves the specificity of chemical exchange saturation transfer (CEST) techniques. While much work remains to be done, results so far are very encouraging. MT is sensitive to patterns of AD-related pathological changes, improving differential diagnosis, and CEST is sensitive to particular pathological processes which could greatly assist in the development and monitoring of therapeutic treatments of this currently incurable disease.


2014 ◽  
Vol 10 ◽  
pp. P55-P55
Author(s):  
Drew R. DeBay ◽  
Ian R. Macdonald ◽  
G. Andrew Reid ◽  
Tim P. O'Leary ◽  
Courtney T. Jollymore ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Pedro Cisternas ◽  
Camila Gherardelli ◽  
Paulina Salazar ◽  
Nibaldo C. Inestrosa

Alzheimer's disease is a progressive neurodegenerative disorder and the most common cause of dementia. Although transgenic Alzheimer's disease (AD) animal models have greatly contributed to our understanding of the disease, therapies tested in these animals have resulted in a high rate of failure in preclinical trials for AD. A promising model is Octodon degus (degu), a Chilean rodent that spontaneously develops AD-like neuropathology. Previous studies have reported that, during aging, degus exhibit a progressive decline in cognitive function, reduced neuroinflammation, and concomitant increases in the number and size of amyloid β (Aβ) plaques in several brain regions. Importantly, in humans and several AD models, a correlation has been shown between brain dysfunction and neuronal glucose utilization impairment, a critical aspect considering the high-energy demand of the brain. However, whether degus develop alterations in glucose metabolism remains unknown. In the present work, we measured several markers of glucose metabolism, namely, glucose uptake, ATP production, and glycolysis and pentose phosphate pathway (PPP) flux, in hippocampal slices from degus of different ages. We found a significant decrease in hippocampal glucose metabolism in aged degus, caused mainly by a drop in glucose uptake, which in turn, reduced ATP synthesis. Moreover, we observed a negative correlation between age and PPP flux. Together, our data further support the use of degus as a model for studying the neuropathology involved in sporadic AD-like pathology and as a potentially valuable tool in the search for effective treatments against the disease.


Sign in / Sign up

Export Citation Format

Share Document