The Salcombe metal cargoes: New light on the provenance and circulation of tin and copper in Later Bronze Age Europe provided by trace elements and isotopes

2022 ◽  
Vol 138 ◽  
pp. 105543
Author(s):  
Daniel Berger ◽  
Quanyu Wang ◽  
Gerhard Brügmann ◽  
Nicole Lockhoff ◽  
Benjamin W. Roberts ◽  
...  
Keyword(s):  
Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 746 ◽  
Author(s):  
Dmitry A. Artemyev ◽  
Maksim N. Ankushev

In the paper, the results of an investigation into trace elements found in slag sulfides from 14 archaeological Bronze Age settlements of the Cis-Urals, Trans-Urals, and North and Central Kazakhstan are presented. The study used Cu-(Fe)-sulfides as indicator minerals. Cu-(Fe)-S minerals in slags are primarily represented by covellite and chalcocite, as well as by rarer bornite and single chalcopyrite grains. Slag sulfides formed relic clasts and neogenic droplets of different shapes and sizes. Supergenic ores in the Bronze Age in Urals and Kazakhstan played a significant role in the mineralogical raw material base. In sulfides, the main indicator elements, Fe, Co, Ni, As, Se, Te, Sb, Ag, Pb, and Bi, are important markers of copper deposit types. Sulfides from olivine Cr-rich spinel containing slags of Ustye, Turganik are characterized by As-Co-Ni high contents and confined to copper deposits in ultramafic rocks. Olivine sulfide-containing slags from Kamenny Ambar, Konoplyanka and Sarlybay 3 are characterized by Co-Se-Te assemblage and confined to mafic rocks. Glassy sulfide-containing slags from Katzbakh 6, Turganik, Ordynsky Ovrag, Ivanovskoe, Tokskoe, Bulanovskoe 2, Kuzminkovskoe 2, Pokrovskoe, Rodnikovoe, and Taldysay are characterized by Ag-Pb-(Ba)-(Bi) assemblage and confined to cupriferous sandstone deposits. High As, Sb, Sn, and Ba contents found in slags can be seen as indicators of alloying or flux components in primary copper smelting. These include samples from Ustye, Katzbakh 6, Rodnikovoe, and Taldysay sites, where high Ba and As slag contents are identified. The compilation of a database with a broad sample of sulfide compositions from Bronze Age slags and mines in the Urals and Kazakhstan will permit the further identification of ore types and raw materials associated with a particular deposit.


2013 ◽  
Vol 40 (1) ◽  
pp. 291-304 ◽  
Author(s):  
Johan Ling ◽  
Eva Hjärthner-Holdar ◽  
Lena Grandin ◽  
Kjell Billström ◽  
Per-Olof Persson

Author(s):  
Dmitry A. Artemyev ◽  
Maksim N. Ankushev

In the paper, the results of an investigation into trace elements found in slag sulphides from 14 archaeological Bronze Age settlements of the Cis-Urals, Trans-Urals and North and Central Kazakhstan are presented. The study used Cu-(Fe)-sulphides as indicator minerals. Cu-(Fe)-S minerals in slags are primarily represented by covellite and chalcocite, as well as by rarer bornite and single chalcopyrite grains. Slag sulphides formed relic clasts and neogenic droplets of different shapes and sizes. Supergenic ores in the Bronze Age in Urals and Kazakhstan played a significant role in the mineralogical raw material base. In sulphides, the main indicator elements Fe, Co, Ni, As, Se, Te, Sb, Ag, Pb, and Bi are important markers of copper deposit types. Sulphides from olivine Cr-rich spinel containing slags of Ustye, Turganik, and Kuzminkovskoe 2 are characterised by As-Co-Ni assemblages and confined to copper deposits in ultramafic rocks. Olivine sulphide-containing slags from Kamenny Ambar, Konoplyanka and Sarlybay 3 are characterised by Co-Se-Te assemblage and confined to mafic rocks. Glassy sulphide-containing slags from Katzbakh 6, Turganik, Ordynsky Ovrag, Ivanovskoe, Tokskoe, Bulanovskoe 2, Pokrovskoe, Rodnikovoe, and Taldysay are characterised by Ag-Pb-(Ba)-(Bi) assemblage and confined to cupriferous sandstone deposits. High As, Sb, Sn and Ba contents found in slags can be seen as indicators of alloying or flux components in primary copper smelting. These include samples from Ustye, Katzbakh 6, Rodnikovoe, and Taldysay sites, where high Ba and As slag contents are identified. The compilation of a database with a broad sample of sulphide compositions from Bronze Age slags and mines in the Urals and Kazakhstan will permit the further identification of ore types and raw materials associated with a particular deposit.


2021 ◽  
Vol 14 (23) ◽  
Author(s):  
Bernhard Lucke ◽  
Rupert Bäumler

AbstractRuins of archaeological structures, mainly dating to the Bronze Age till Byzantine period, were investigated in a case study in the Petra region in southern Jordan and in the northern Negev desert in Israel. They are covered by post-abandonment debris sediments which provided the parent material of initial soils now developed on the ruins. Such debris sediments have so far rarely been studied although they likely contain a significant aeolian dust fraction because structures and wall remains may act as effective dust traps. We analyzed different types of archaeological structures: cult sites on hilltops, runoff-irrigated terraces on slopes, and cisterns including associated cleanout mounds. As well, we collected current aeolian sediments in nearby dry marble dust traps. It was expected that the various ruins and location types would matter for sediment properties, but substrate composition in all investigated structures was similar. This suggests that most of the fine fractions of the debris material were primarily supplied by wind whereas fluvial processes only re-distributed aeolian sediments. A major aeolian contribution from local weathered rocks could be observed in the Petra region, but not in the Negev, which seems connected with the geology. In situ pedogenesis in both investigation regions is negligible. The ruins seem to act as current dust collectors, but their sediments cannot directly be compared with the material collected in nearby dry marble dust traps. Analogies to different types of collectors for aeolian sediments can be made: depending on design, dust traps gather aeolian material differently. Standard dry marble dust collectors are characterized by similar size of settling dust samples as compared to average aeolian deposition in the ruins, but are of dissimilar substrate composition with regard to particle size distribution and contents of major and trace elements. Sediments in the archaeological structures in southern Jordan show finer textures and higher contents of most major and trace elements which may indicate preferential fixation of silt and clay against sand in the ruins, whereas sediments in dry marble dust collectors in Jordan are relatively depleted in silt and clay. This could be due to crusts and clast covers because the studied archaeological hilltop structures were found covered by surface crusts and pavements of stones and pottery sherds. These may mirror the effect of desert pavements. In addition, current dust samples suggest that precipitation during aeolian sedimentation, in particular in case of snow, is connected with enhanced deposition of (possibly clay-coated) silt. Sediments in the archaeological structures include material from remote and local sources as well as from “recycled” paleosols. Average hilltop dust accretion rates were calculated as ~ 0.14 mm/year, which is in good agreement with results from dry marble dust collectors. They exceed rates calculated for Pleistocene hilltop loess in the Negev. This seems due to enhanced dust fixation in the archaeological ruins as compared to natural Negev loess soils, underlining a so far rarely considered but important role of sediment fixation mechanisms.


1994 ◽  
Vol 60 (S1) ◽  
pp. 34-35
Author(s):  
Ornean Hook

Ten amorphous copper alloy fragments from Sam-y-bryn-caled, Powys, were submitted to the Department of Scientific Research for analysis. They were analysed qualitatively using X-ray fluorescence (XRF) to identify the major and trace elements. Three of the larger fragments were alto analysed quantitatively using inductively-coupled plasma spectrometry (ICP), allowing their compositions to be compared with other analyses of bronze age mctalwork (e.g. Northover, 1980).In additionna number of clay/daub fragments ant i possible piece of slag from the upper levels of the central pit were analysed to try and determine whether they were connected with metalworking.


1970 ◽  
Vol 35 ◽  
pp. 330-344 ◽  
Author(s):  
John M. Coles

The analysis of Early Bronze Age metal objects in Europe has been the concern of the Arbeitsgemeinschaft für Metallurgie at Stuttgart for a number of years. In 1960 the first major results of this ambitious programme were presented in a volume generally described as SAM 1, or Studien zu den Anfängen der Metallurgie (Junghans, Sangmeister and Schröder, 1960). Using the trace elements arsenic (As), antimony (Sb), silver (Ag), Nickel (Ni) and Bismuth (Bi), SAM 1 described the content and distribution of 12 European metal groups, each devised on the basis of the varying concentrations of these trace elements in Bronze Age metal. This programme was the first to attempt to examine metallurgy in this way for the whole of Europe. A number of regionally restricted studies had already been carried out before the appearance of SAM 1; the Irish, and some British, material had been previously examined by Coghlan and Case (1957) and by Britton (1961). In 1964 a major review of the Stuttgart production appeared, in which the method of combining the elements into groups was criticized on archaeological grounds (Butler and van der Waals, 1964). Subsequently a new approach was devised by Waterbolk; in this, the Stuttgart method of attempting to find clusters from a gigantic range of analyses, each one treated exactly as another, was abandoned, and replaced by a more archaeological approach in which typology and association were used (Waterbolk and Butler, 1965). The significance of the groups produced by this method are only now being assessed.


Author(s):  
O.T. Woo ◽  
G.J.C. Carpenter

To study the influence of trace elements on the corrosion and hydrogen ingress in Zr-2.5 Nb pressure tube material, buttons of this alloy containing up to 0.83 at% Fe were made by arc-melting. The buttons were then annealed at 973 K for three days, furnace cooled, followed by ≈80% cold-rolling. The microstructure of cold-worked Zr-2.5 at% Nb-0.83 at% Fe (Fig. 1) contained both β-Zr and intermetallic precipitates in the α-Zr grains. The particles were 0.1 to 0.7 μm in size, with shapes ranging from spherical to ellipsoidal and often contained faults. β-Zr appeared either roughly spherical or as irregular elongated patches, often extending to several micrometres.The composition of the intermetallic particles seen in Fig. 1 was determined using Van Cappellen’s extrapolation technique for energy dispersive X-ray analysis of thin metal foils. The method was employed to avoid corrections for absorption and fluorescence via the Cliff-Lorimer equation: CA/CB = kAB · IA/IB, where CA and CB are the concentrations by weight of the elements A and B, and IA and IB are the X-ray intensities; kAB is a proportionality factor.


Author(s):  
D. A. Carpenter ◽  
Ning Gao ◽  
G. J. Havrilla

A monolithic, polycapillary, x-ray optic was adapted to a laboratory-based x-ray microprobe to evaluate the potential of the optic for x-ray micro fluorescence analysis. The polycapillary was capable of collecting x-rays over a 6 degree angle from a point source and focusing them to a spot approximately 40 µm diameter. The high intensities expected from this capillary should be useful for determining and mapping minor to trace elements in materials. Fig. 1 shows a sketch of the capillary with important dimensions.The microprobe had previously been used with straight and with tapered monocapillaries. Alignment of the monocapillaries with the focal spot was accomplished by electromagnetically scanning the focal spot over the beveled anode. With the polycapillary it was also necessary to manually adjust the distance between the focal spot and the polycapillary.The focal distance and focal spot diameter of the polycapillary were determined from a series of edge scans.


1979 ◽  
Vol 7 (6) ◽  
pp. 1330-1331
Author(s):  
E. D. WILLS

Sign in / Sign up

Export Citation Format

Share Document