Tephrochronology and micromorphology of Theran tephra deposits at Palaikastro, Crete

2021 ◽  
Vol 36 ◽  
pp. 102884
Author(s):  
Rachel Kulick ◽  
John Westgate
Keyword(s):  
1990 ◽  
Vol 33 (3) ◽  
pp. 276-290 ◽  
Author(s):  
James R. Riehle ◽  
Peter M. Bowers ◽  
Thomas A. Ager

AbstractThe most widespread of all Holocene tephra deposits in the Cook Inlet region of south-central Alaska is a set of deposits from Hayes volcano. Because of their unique phenocryst content—biotite in rare amounts and a high proportion of amphibole to pyroxene—the deposits are readily identifiable at all but the most distant sites where they are very fine grained. Eighteen radiocarbon dates from eight upland sites limit the age of the tephra set to between about 3500 and 3800 yr. The set originated at Hayes volcano in the Tordrillo Mountains 150 km northwest of Anchorage; seven or possibly eight closely succeeding deposits, low-silica dacite in composition, compose two main lobes that extend northeast for 400 km and south for at least 250 km from the vent. We estimate the total tephra volume to be 10 km3; multiple layers imply four to six larger and two or three smaller eruptions. The deposits are a nearly isochronous marker horizon that should be useful in future archeologic, geologic, and palynologic studies in the region.


2020 ◽  
Author(s):  
Jenni L. Hopkins ◽  
Janine E. Bidmead ◽  
David J. Lowe ◽  
Richard J. Wysoczanski ◽  
Bradley J. Pillans ◽  
...  

Abstract. Although analyses of tephra-derived glass shards have been undertaken in New Zealand for nearly four decades (pioneered by Paul Froggatt), our study is the first to systematically develop a formal, comprehensive, open access, reference dataset of glass-shard compositions for New Zealand tephras. These data will provide an important reference tool for future studies to identify and correlate tephra deposits and for associated petrological and magma-related studies within New Zealand and beyond. Here we present the foundation dataset for TephraNZ, an open access reference dataset for selected tephra deposits in New Zealand. Prominent, rhyolitic, tephra deposits from the Quaternary were identified, with sample collection targeting original type sites or reference locations where the tephra's identification is unequivocally known based on independent dating or mineralogical techniques. Glass shards were extracted from the tephra deposits and major and trace element geochemical compositions were determined. We discuss in detail the data reduction process used to obtain the results and propose that future studies follow a similar protocol in order to gain comparable data. The dataset contains analyses of twenty-three proximal and twenty-seven distal tephra samples characterising 45 eruptive episodes ranging from Kaharoa (636 ± 12 cal. yrs BP) to the Hikuroa Pumice member (2.0 ± 0.6 Ma) from six or more caldera sources, most from the central Taupō Volcanic Zone. We report 1385 major element analyses obtained by electron microprobe (EMPA), and 590 trace element analyses obtained by laser ablation (LA)-ICP-MS, on individual glass shards. Using PCA, Euclidean similarity coefficients, and geochemical investigation, we show that chemical compositions of glass shards from individual eruptions are commonly distinguished by major elements, especially CaO, TiO2, K2O, FeOt (Na2O+ K2O and SiO2/K2O), but not always. For those tephras with similar glass major-element signatures, some can be distinguished using trace elements (e.g. HFSEs: Zr, Hf, Nb; LILE: Ba, Rb; REE: Eu, Tm, Dy, Y, Tb, Gd, Er, Ho, Yb, Sm), and trace element ratios (e.g. LILE / HFSE: Ba / Th, Ba / Zr, Rb / Zr; HFSE / HREE: Zr / Y, Zr / Yb, Hf / Y; LREE / HREE: La / Yb, Ce / Yb). Geochemistry alone cannot be used to distinguish between glass shards from the following tephra groups: Taupō (Unit Y in the post-Ōruanui eruption sequence of Taupō volcano) and Waimihia (Unit S); Poronui (Unit C) and Karapiti (Unit B); Rotorua and Rerewhakaaitu; and Kawakawa/Ōruanui, Okaia, and Unit L (of the Mangaone subgroup eruption sequence). Other characteristics can be used to separate and distinguish all of these otherwise-similar eruptives except Poronui and Karapiti. Bimodality caused by K2O variability is newly identified in Poihipi and Tahuna tephras. Using glass shard compositions, tephra sourced from Taupō Volcanic Centre (TVC) and Mangakino Volcanic Centre (MgVC) can be separated using bivariate plots of SiO2/K2O vs. Na2O+K2O. Glass shards from tephras derived from Kapenga Volcanic Centre, Rotorua Volcanic Centre, and Whakamaru Volcanic Centre have similar major- and trace-element chemical compositions to those from the MgVC, but can overlap with glass analyses from tephras from Taupō and Okataina volcanic centres. Specific trace elements and trace element ratios have lower variability than the heterogeneous major element and bimodal signatures, making them easier to geochemically fingerprint.


2017 ◽  
Vol 17 (7) ◽  
pp. 4401-4418 ◽  
Author(s):  
Frances Beckett ◽  
Arve Kylling ◽  
Guðmunda Sigurðardóttir ◽  
Sibylle von Löwis ◽  
Claire Witham

Abstract. On 16–17 September 2013 strong surface winds over tephra deposits in southern Iceland led to the resuspension and subsequent advection of significant quantities of volcanic ash. The resulting resuspended ash cloud was transported to the south-east over the North Atlantic Ocean and, due to clear skies at the time, was exceptionally well observed in satellite imagery. We use satellite-based measurements in combination with radiative transfer and dispersion modelling to quantify the total mass of ash resuspended during this event. Typically ash clouds from explosive eruptions are identified in satellite measurements from a negative brightness temperature difference (BTD) signal; however this technique assumes that the ash resides at high levels in the atmosphere. Due to a temperature inversion in the troposphere over southern Iceland during 16 September 2013, the resuspended ash cloud was constrained to altitudes of  <  2 km a.s.l. We show that a positive BTD signal can instead be used to identify ash-containing pixels from satellite measurements. The timing and location of the ash cloud identified using this technique from measurements made by the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (NPP) satellite agree well with model predictions using the dispersion model NAME (Numerical Atmospheric-dispersion Modelling Environment). Total column mass loadings are determined from the VIIRS data using an optimal estimation technique which accounts for the low altitude of the resuspended ash cloud and are used to calibrate the emission rate in the resuspended ash scheme in NAME. Considering the tephra deposits from the recent eruptions of Eyjafjallajökull and Grímsvötn as the potential source area for resuspension for this event, we estimate that  ∼  0.2 Tg of ash was remobilized during 16–17 September 2013.


Clay Minerals ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 351-372 ◽  
Author(s):  
M.J. Cunningham ◽  
D.J. Lowe ◽  
J.B. Wyatt ◽  
V.G. Moon ◽  
G. Jock Churchman

AbstractHydrated halloysite was discovered in books, a morphology previously associated exclusively with kaolinite. From ∼1.5 to ∼1500 μm in length, the books showed significantly greater mean Fe contents (Fe2O3= 5.2 wt.%) than tubes (Fe2O3= 3.2 wt.%), and expanded rapidly with formamide. They occurred, along with halloysite tubes, spheroids and plates, in highly porous yet poorly permeable, silt-dominated, Si-rich, pumiceous rhyolitic tephra deposits aged ∼0.93 Ma (Te Puna tephra) and ∼0.27 Ma (Te Ranga tephra) at three sites ∼10–20 m stratigraphically below the modern landsurface in the Tauranga area, eastern North Island, New Zealand. The book-bearing tephras were at or near saturation, but have experienced intermittent partial drying, favouring the proposed changes: solubilized volcanic glass + plagioclase→halloysite spheroids→halloysite tubes→halloysite plates→ halloysite books. Unlike parallel studies elsewhere involving both halloysite and kaolinite, kaolinite has not formed in Tauranga presumably because the low permeability ensures that the sites largely remain locally wet so that the halloysite books are metastable. An implication of the discovery is that some halloysite books in similar settings may have been misidentified previously as kaolinite.


Sign in / Sign up

Export Citation Format

Share Document