Optimal assessment of upper body motion – Which and how many landmarks need to be captured for representing rigid body orientation?

2022 ◽  
pp. 110952
Author(s):  
Thomas Zander ◽  
Ali Firouzabadi ◽  
Maxim Bashkuev ◽  
Hendrik Schmidt
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ramon J. Boekesteijn ◽  
José M. H. Smolders ◽  
Vincent J. J. F. Busch ◽  
Alexander C. H. Geurts ◽  
Katrijn Smulders

Abstract Background Although it is well-established that osteoarthritis (OA) impairs daily-life gait, objective gait assessments are not part of routine clinical evaluation. Wearable inertial sensors provide an easily accessible and fast way to routinely evaluate gait quality in clinical settings. However, during these assessments, more complex and meaningful aspects of daily-life gait, including turning, dual-task performance, and upper body motion, are often overlooked. The aim of this study was therefore to investigate turning, dual-task performance, and upper body motion in individuals with knee or hip OA in addition to more commonly assessed spatiotemporal gait parameters using wearable sensors. Methods Gait was compared between individuals with unilateral knee (n = 25) or hip OA (n = 26) scheduled for joint replacement, and healthy controls (n = 27). For 2 min, participants walked back and forth along a 6-m trajectory making 180° turns, with and without a secondary cognitive task. Gait parameters were collected using 4 inertial measurement units on the feet and trunk. To test if dual-task gait, turning, and upper body motion had added value above spatiotemporal parameters, a factor analysis was conducted. Effect sizes were computed as standardized mean difference between OA groups and healthy controls to identify parameters from these gait domains that were sensitive to knee or hip OA. Results Four independent domains of gait were obtained: speed-spatial, speed-temporal, dual-task cost, and upper body motion. Turning parameters constituted a gait domain together with cadence. From the domains that were obtained, stride length (speed-spatial) and cadence (speed-temporal) had the strongest effect sizes for both knee and hip OA. Upper body motion (lumbar sagittal range of motion), showed a strong effect size when comparing hip OA with healthy controls. Parameters reflecting dual-task cost were not sensitive to knee or hip OA. Conclusions Besides more commonly reported spatiotemporal parameters, only upper body motion provided non-redundant and sensitive parameters representing gait adaptations in individuals with hip OA. Turning parameters were sensitive to knee and hip OA, but were not independent from speed-related gait parameters. Dual-task parameters had limited additional value for evaluating gait in knee and hip OA, although dual-task cost constituted a separate gait domain. Future steps should include testing responsiveness of these gait domains to interventions aiming to improve mobility.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Thomas Eiter ◽  
Mads Kyed

AbstractThe equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.


Author(s):  
Guangbo Hao ◽  
Xianwen Kong ◽  
Xiuyun He

A planar reconfigurable linear (also rectilinear) rigid-body motion linkage (RLRBML) with two operation modes, that is, linear rigid-body motion mode and lockup mode, is presented using only R (revolute) joints. The RLRBML does not require disassembly and external intervention to implement multi-task requirements. It is created via combining a Robert’s linkage and a double parallelogram linkage (with equal lengths of rocker links) arranged in parallel, which can convert a limited circular motion to a linear rigid-body motion without any reference guide way. This linear rigid-body motion is achieved since the double parallelogram linkage can guarantee the translation of the motion stage, and Robert’s linkage ensures the approximate straight line motion of its pivot joint connecting to the double parallelogram linkage. This novel RLRBML is under the linear rigid-body motion mode if the four rocker links in the double parallelogram linkage are not parallel. The motion stage is in the lockup mode if all of the four rocker links in the double parallelogram linkage are kept parallel in a tilted position (but the inner/outer two rocker links are still parallel). In the lockup mode, the motion stage of the RLRBML is prohibited from moving even under power off, but the double parallelogram linkage is still moveable for its own rotation application. It is noted that further RLRBMLs can be obtained from the above RLRBML by replacing Robert’s linkage with any other straight line motion linkage (such as Watt’s linkage). Additionally, a compact RLRBML and two single-mode linear rigid-body motion linkages are presented.


Author(s):  
X. Tong ◽  
B. Tabarrok

Abstract In this paper the global motion of a rigid body subject to small periodic torques, which has a fixed direction in the body-fixed coordinate frame, is investigated by means of Melnikov’s method. Deprit’s variables are introduced to transform the equations of motion into a form describing a slowly varying oscillator. Then the Melnikov method developed for the slowly varying oscillator is used to predict the transversal intersections of stable and unstable manifolds for the perturbed rigid body motion. It is shown that there exist transversal intersections of heteroclinic orbits for certain ranges of parameter values.


Author(s):  
T. D. Burton ◽  
C. P. Baker ◽  
J. Y. Lew

Abstract The maneuvering and motion control of large flexible structures are often performed hydraulically. The pressure dynamics of the hydraulic subsystem and the rigid body and vibrational dynamics of the structure are fully coupled. The hydraulic subsystem pressure dynamics are strongly nonlinear, with the servovalve opening x(t) providing a parametric excitation. The rigid body and/or flexible body motions may be nonlinear as well. In order to obtain accurate ODE models of the pressure dynamics, hydraulic fluid compressibility must generally be taken into account, and this results in system ODE models which can be very stiff (even if a low order Galerkin-vibration model is used). In addition, the dependence of the pressure derivatives on the square root of pressure results in a “faster than exponential” behavior as certain limiting pressure values are approached, and this may cause further problems in the numerics, including instability. The purpose of this paper is to present an efficient strategy for numerical simulation of the response of this type of system. The main results are the following: 1) If the system has no rigid body modes and is thus “self-centered,” that is, there exists an inherent stiffening effect which tends to push the motion to a stable static equilibrium, then linearized models of the pressure dynamics work well, even for relatively large pressure excursions. This result, enabling linear system theory to be used, appears of value for design and optimization work; 2) If the system possesses a rigid body mode and is thus “non-centered,” i.e., there is no stiffness element restraining rigid body motion, then typically linearization does not work. We have, however discovered an artifice which can be introduced into the ODE model to alleviate the stiffness/instability problems; 3) in some situations an incompressible model can be used effectively to simulate quasi-steady pressure fluctuations (with care!). In addition to the aforementioned simulation aspects, we will present comparisons of the theoretical behavior with experimental histories of pressures, rigid body motion, and vibrational motion measured for the Battelle dynamics/controls test bed system: a hydraulically actuated system consisting of a long flexible beam with end mass, mounted on a hub which is rotated hydraulically. The low order ODE models predict most aspects of behavior accurately.


1997 ◽  
Vol 53 (6) ◽  
pp. 953-960 ◽  
Author(s):  
F. Belaj

The asymmetric units of both ionic compounds [N-(chloroformimidoyl)phosphorimidic trichloridato]trichlorophosphorus hexachlorophosphate, [ClC(NPCl3)2]+PCl^{-}_{6} (1), and [N-(acetimidoyl)phosphorimidic trichloridato]trichlorophosphorus hexachloroantimonate, [CH3C(NPCl3)2]+SbCl^{-}_{6} (2), contain two formula units with the atoms located on general positions. All the cations show cis–trans conformations with respect to their X—C—N—P torsion angles [X = Cl for (1), C for (2)], but quite different conformations with respect to their C—N—P—Cl torsion angles. Therefore, the two NPCl3 groups of a cation are inequivalent, even though they are equivalent in solution. The very flexible C—N—P angles ranging from 120.6 (3) to 140.9 (3)° can be attributed to the intramolecular Cl...Cl and Cl...N contacts. A widening of the C—N—P angles correlates with a shortening of the P—N distances. The rigid-body motion analysis shows that the non-rigid intramolecular motions in the cations cannot be explained by allowance for intramolecular torsion of the three rigid subunits about specific bonds.


Sign in / Sign up

Export Citation Format

Share Document