In vitro propagation of plant virus using different forms of plant tissue culture and modes of culture operation

2009 ◽  
Vol 143 (3) ◽  
pp. 198-206 ◽  
Author(s):  
Sharon M.-H. Shih ◽  
Pauline M. Doran
2019 ◽  
Vol 29 (1) ◽  
pp. 111-119
Author(s):  
Khushboo Rawal ◽  
Hareshkumar Keharia

Plant tissue culture has revolutionized the field of plant biotechnology. However, there are certain obstacles which overall restrain the output of the plant tissue culturing. One of them is contamination of the tissue culture stock which is a major problem limiting the output. Aegle marmelos (L.) is a medicinal plant whose genotype qualities are maintained through clonal propagation of nodal segment as an explant. It harbors plethora of fungi which curbs the successful in vitro propagation. Chemical fungicide like bavistin is used to prevent the contamination in tissue culture which raises the environmental concerns. Thus, use of microbially derived antifungals can help in preventing fungal growth with benefit of positively impacting the plant growth. Here, authors investigated the use of heat stable lipopeptides which are secondary metabolites derived from Bacillus amyloliquefaciens AB30a for prevention of contamination in tissue culturing of nodal explants of A. marmelos positively impacting its in-vitro propagation. Plant Tissue Cult. & Biotech. 29(1): 111-119, 2019 (June)


2016 ◽  
Vol 128 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Siham Esserti ◽  
Mohamed Faize ◽  
Lalla Aicha Rifai ◽  
Amal Smaili ◽  
Malika Belfaiza ◽  
...  

Planta ◽  
2018 ◽  
Vol 248 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Claudia A. Espinosa-Leal ◽  
César A. Puente-Garza ◽  
Silverio García-Lara

2018 ◽  
Vol 28 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Mohammad Ali ◽  
Shefali Boonerjee ◽  
Mohammad Nurul Islam ◽  
Mihir Lal Saha ◽  
M Imdadul Hoque ◽  
...  

The endogenous bacterial contamination of plant tissue culture materials and their possible control was studied. Nine bacterial isolates were isolated from the contaminated tissue culture materials viz. potato and tea. On the basis of morphology and biochemical characters of nine isolates, seven were identified as Gram positive belonging to Bacillus alcalophilus, B. circulans, B. infantis, B. lentus, B. schlegelii, B. pumilus and B. subtilis. Remaining two were Gram negative and identified as Enterobacter cloacae sub. sp. dissolvens and Pantoea agglomerans. Molecular analysis was conducted on the basis of 16S rDNA sequence to confirm three isolates. Culture and sensitivity test was carried out to screen out the antibiotic sensitivity where streptomycin (S-10), polymyxin (PB-300) and gentamicin (CN-120) antibiotics were found to be effective against all bacterial isolates. The culture and sensitivity test reflected the feasibility to control or eliminate the contaminant bacteria during in vitro culture of plant which is very much required in the commercial tissue culture production.Plant Tissue Cult. & Biotech. 28(1): 99-108, 2018 (June)


2017 ◽  
pp. 24-33
Author(s):  
Swetnisha, Ajitabh Bora, H.K. Gogoi, P.S. Raju

Capsaicin, a secondary metabolite produced in capsicum, is in high demand in pharmaceutical industry because of its various medicinal properties. Currently, the supply of capsaicin depends upon its extraction from capsicum fruits. This limits the production of capsaicin as it depends upon agricultural produce. The current review has compiled information from various literature published on chemistry and importance of capsaicin along with its method of production. It also reviews the process of in vitro production of capsaicin through plant tissue culture, strategies of increasing capsaicin accumulation and its advantages over extraction from fruits and artificial synthesis.


2021 ◽  
Vol 12 (1) ◽  
pp. 107-112
Author(s):  
Simran Chandrahas Shetty ◽  
Narasimhan S

Autoclaving nutrient media is still considered as the optimum mode of sterilisation in plant cell and tissue culture. During the process steam under high pressure is maintained at 120 degrees Celsius, 15 psi for 15-20 minutes in a chamber, optimised to kill all possible microbial life forms. But the disadvantages related to the process of autoclaving are plentiful. They are, decrease in the media pH, salt precipitation, agar depolymerisation, carbohydrate hydrolysis, volatile obliteration and necessity of the infrastructure investment. Requirements of additional resources (time, human resources, electrical energy) have forced the lookout for a more viable alternative, that is, chemical sterilisation. The use of Sodium dichloroisocyanurate (NaDCC) is a useful alternative for media and explant sterilisation. NaDCC is stable, water-soluble, non-toxic and easy to use at room temperature, does not have any environmental hazards and is not phytotoxic. The use of NaDCC as a disinfectant has been documented well concerning water sterilisation, surface sterilisation and also as a broad spectrum disinfecting agent. Disinfecting property of NaDCC is due to the hydrolytic release of chlorine, and this can be utilised for sterilisation of media and explants in plant tissue culture. NaDCC is a useful alternative for autoclaving at a concentration range of 0.05 to 1.0 g/l. However, only a few reports are available for its use as a sterilising agent for media and explants for in vitro cultures of plants. This paper discusses and reviews the possibility of establishing NaDCC as an active agent for explant sterilisation and as a viable alternative to medium sterilisation through autoclaving.


2016 ◽  
Vol 4 (11) ◽  
pp. 2300-2307
Author(s):  
Vibha Bhingradiya ◽  
◽  
Archana Mankad ◽  
Ruby Patel ◽  
Shivangi Mathur ◽  
...  

2021 ◽  
Author(s):  
Priyanka Bijalwan ◽  
Shilpa .

In vitro culture of plant cells/tissues is now routine using a range of explant types from many of the important vegetable and fruit crops. Successful technologies include isolation, culture of tissues, cells, protoplasts, organs, embryos, ovules, anthers and microspores and regeneration from them of complete plantlets. The development of plant tissue culture technology represents one of the most exciting advances in plant sciences. For example, the prospect of being able to introduce, develop, produce, transfer and conserve the existing gene pool of plant sciences by using tissue culture methods opens up new opportunities for researches and entrepreneurs. The term plant tissue culture should denote in vitro cultivation of plant cells or tissues in an unorganized mass, i.e., callus culture. Plant tissue culture techniques, in combination with recombinant DNA technology, are the essential requirements for the development of transgenic plants. However, culture techniques like anther/pollen/ovule culture, meristem culture can themselves be utilized for crop improvement or may serve as an aid to conventional breeding. In recent, isolated microspore culture has developed as a breeding tool and an experimental system for various genetic manipulations. The inherent potentiality of a plant cell to give rise to a whole plant, a capacity which is often retained even after a cell has undergone final differentiation in the plant body, is described as ‘cellular totipotency’. On the other hand, production of virus-free plants via meristem culture can reduce losses caused by phyto-pathogens. Embryo culture has many potential uses ranging from overcoming seed dormancy to facilitation of inter-specific hybridization. Protoplast fusion technique can be used for the transfer of cytoplasmic male sterility from one species to another in a short period of time. In cabbage, male sterile cybrids are being utilized by seed companies to produce hybrid seeds on commercial scale and at competitive rates. Plant tissue culture and cell culture are providing useful methods for germplasm storage either by low temperature storage of organized tissue, or cryopreservation of cell or embryo culture.


Author(s):  
Akshay Milind Patil ◽  
Pooja Prakash Gunjal ◽  
Dr. Sonali Das

The multiplication efficacy by bulb is low and the plantlets are more susceptible to disease, therefore, there is a need to develop a protocol for its propagation. Lilium candidum is listed in the saitma prefecture Red Data Book as a critically endangered plant and rescuing information regarding its micro-propagation is rather limited. On this regard, the application of in vitro micropropagtion procedure might help to obtain large numbers of uniform plants of endangered species of Lilium. Dried lilies are a rich source of fiber and also rich in sodium and carbs. Lily bulbs have proteins and starch and also small quantities of iron, calcium, phosphorous, and vitamin B1, B2, C. The health benefits of the lily for the heart are well known on account of the active cardiac glycosides as well as the flavonoids which tend to stimulate the arteries and can cause them to dilute. Another one of the therapeutic uses of the lily flower is in the case of treating burns and preventing the formation of scar tissue. One of the main health benefits of the lily flower is that it helps regulating the heart rate there by allowing the heart to function more efficiently and regular. Having multiple medicinal properties we decided to cultivate Lilium candidum using plant tissue culture so farming can be increased using this cost efficient techniques. In this research, we have studied various Effect of different concentration of BAP and NAA on the initiation of Lilium candidum from bulb and IBA, IAA and NAA on the rooting of shoots of Lilium Candidum.


1970 ◽  
Vol 18 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Zhao Guang-jie ◽  
Wang Zhan-bin ◽  
Wang Dan

Effects of different concentrations of 2-ip and IBA in WPM basal medium for Blomidon blueberry in vitro propagation and four different rooting agents at the early stage after transplantation showed that 15 mg/l of 2-ip is the best concentration to induce shoots. For optimum in vitro root formation 10 µM IBA was found to be best and four rooting agents for seedling transplantation according to their effects were No.2>, No.4>, No.3 >, water > and No. 1. Key words: Blomidon, Tissue culture, In vitro regeneration, Rooting agent D.O.I. 10.3329/ptcb.v18i2.3650 Plant Tissue Cult. & Biotech. 18(1): 187-195, 2008 (December)


Sign in / Sign up

Export Citation Format

Share Document