Genome-wide identification of the targets for genetic manipulation to improve l-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection

2013 ◽  
Vol 168 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Takashi Hirasawa ◽  
Masakado Takekuni ◽  
Katsunori Yoshikawa ◽  
Aki Ookubo ◽  
Chikara Furusawa ◽  
...  
2021 ◽  
Author(s):  
QinQin Yu ◽  
Matti Gralka ◽  
Marie-Cécilia Duvernoy ◽  
Megan Sousa ◽  
Arbel Harpak ◽  
...  

AbstractDemographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude (compared to in the wild type). Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable trait of a population.


Yeast ◽  
2011 ◽  
Vol 28 (5) ◽  
pp. 349-361 ◽  
Author(s):  
Katsunori Yoshikawa ◽  
Tadamasa Tanaka ◽  
Yoshihiro Ida ◽  
Chikara Furusawa ◽  
Takashi Hirasawa ◽  
...  

2020 ◽  
Author(s):  
QinQin Yu ◽  
Matti Gralka ◽  
Marie-Cécilia Duvernoy ◽  
Megan Sousa ◽  
Arbel Harpak ◽  
...  

AbstractDemographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude higher than the wild type. Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable phenotype of a population.


mSystems ◽  
2021 ◽  
Author(s):  
André Mateus ◽  
Malay Shah ◽  
Johannes Hevler ◽  
Nils Kurzawa ◽  
Jacob Bobonis ◽  
...  

Single-gene deletion libraries have allowed genome-wide characterization of gene function and interactions. While each mutant intends to disrupt the function of a single gene, it can unintentionally target other genes, such as those located in the same operon as the deletion.


2015 ◽  
Vol 11 (11) ◽  
pp. 3129-3136 ◽  
Author(s):  
Namal V. C. Coorey ◽  
James H. Matthews ◽  
David S. Bellows ◽  
Paul H. Atkinson

Identifying Saccharomyces cerevisiae genome-wide gene deletion mutants that confer hypersensitivity to a xenobiotic aids the elucidation of its mechanism of action (MoA).


2008 ◽  
Vol 105 (46) ◽  
pp. 17682-17687 ◽  
Author(s):  
Jessica Bockhorn ◽  
Bharvi Balar ◽  
Dongming He ◽  
Eden Seitomer ◽  
Paul R. Copeland ◽  
...  

Selenomethionine (SeMet) is a potentially toxic amino acid, and yet it is a valuable tool in the preparation of labeled proteins for multiwavelength anomalous dispersion or single-wavelength anomalous dispersion phasing in X-ray crystallography. The mechanism by which high levels of SeMet exhibits its toxic effects in eukaryotic cells is not fully understood. Attempts to use Saccharomyces cerevisiae for the preparation of fully substituted SeMet proteins for X-ray crystallography have been limited. A screen of the viable S. cerevisiae haploid null allele strain collection for resistance to SeMet was performed. Deletion of the CYS3 gene encoding cystathionine gamma-lyase resulted in the highest resistance to SeMet. In addition, deletion of SSN2 resulted in both increased resistance to SeMet as well as reduced levels of Cys3p. A methionine auxotrophic strain lacking CYS3 was able to grow in media with SeMet as the only source of Met, achieving essentially 100% occupancy in total proteins. The CYS3 deletion strain provides advantages for an easy and cost-effective method to prepare SeMet-substituted protein in yeast and perhaps other eukaryotic systems.


Sign in / Sign up

Export Citation Format

Share Document