single gene deletion
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Saul Moore

Protocol for screening candidate behaviour-modifying E. coli BW25113 single-gene deletion mutants from the 'Keio Collection', to investigate their effects on Caenorhabditis elegans behaviour when killed by ultraviolet (UV) light


2021 ◽  
Author(s):  
Saul Moore

Protocol for screening candidate behaviour-modifying E. coli BW25113 single-gene deletion mutants from the 'Keio Collection', to investigate their effects on Caenorhabditis elegans behaviour in the presence of antioxidants.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Konrad Beyer ◽  
Simon Kracht ◽  
Jessica Kehrer ◽  
Mirko Singer ◽  
Dennis Klug ◽  
...  

Abstract Background Plasmodium sporozoites are the highly motile forms of malaria-causing parasites that are transmitted by the mosquito to the vertebrate host. Sporozoites need to enter and cross several cellular and tissue barriers for which they employ a set of surface proteins. Three of these proteins are members of the thrombospondin related anonymous protein (TRAP) family. Here, potential additive, synergistic or antagonistic roles of these adhesion proteins were investigated. Methods Four transgenic Plasmodium berghei parasite lines that lacked two or all three of the TRAP family adhesins TRAP, TLP and TREP were generated using positive–negative selection. The parasite lines were investigated for their capacity to attach to and move on glass, their ability to egress from oocysts and their capacity to enter mosquito salivary glands. One strain was in addition interrogated for its capacity to infect mice. Results The major phenotype of the TRAP single gene deletion dominates additional gene deletion phenotypes. All parasite lines including the one lacking all three proteins were able to conduct some form of active, if unproductive movement. Conclusions The individual TRAP-family adhesins appear to play functionally distinct roles during motility and infection. Other proteins must contribute to substrate adhesion and gliding motility. Graphical Abstract


mSystems ◽  
2021 ◽  
Author(s):  
André Mateus ◽  
Malay Shah ◽  
Johannes Hevler ◽  
Nils Kurzawa ◽  
Jacob Bobonis ◽  
...  

Single-gene deletion libraries have allowed genome-wide characterization of gene function and interactions. While each mutant intends to disrupt the function of a single gene, it can unintentionally target other genes, such as those located in the same operon as the deletion.


2021 ◽  
Author(s):  
T. L. Westerman ◽  
M. K. Sheats ◽  
J. R. Elfenbein

During enteric salmonellosis, neutrophil generated reactive oxygen species alter the gut microenvironment favoring survival of Salmonella Typhimurium. While the type-3 secretion system-1 (T3SS-1) and flagellar motility are potent Salmonella Typhimurium agonists of the neutrophil respiratory burst in vitro, neither of these pathways alone are responsible for stimulation of a maximal respiratory burst. In order to identify Salmonella Typhimurium genes that impact the magnitude of the neutrophil respiratory burst, we performed a two-step screen of defined mutant libraries in co-culture with human neutrophils. We first screened Salmonella Typhimurium mutants lacking defined genomic regions and then tested single gene deletion mutants representing particular regions under selection. A subset of single gene deletion mutants were selected for further investigation. Mutants in four genes, STM1696 (sapF), STM2201 (yeiE), STM2112 (wcaD), and STM2441 (cysA), induced an attenuated respiratory burst. We linked the altered respiratory burst to reduced T3SS-1 expression and/or altered flagellar motility for two mutants (ΔSTM1696 and ΔSTM2201). The ΔSTM2441 mutant, defective for sulfate transport, formed aggregates in minimal media and adhered to surfaces in rich media, suggesting a role for sulfur homeostasis in regulation of aggregation/adherence. We linked the aggregation/adherence phenotype of the ΔSTM2441 mutant to biofilm-associated protein A and flagellins and hypothesize that aggregation caused the observed reduction in the magnitude of the neutrophil respiratory burst. Our data demonstrate that Salmonella Typhimurium has numerous mechanisms to limit the magnitude of the neutrophil respiratory burst. These data further inform our understanding of how Salmonella may alter human neutrophil antimicrobial defenses.


2021 ◽  
Author(s):  
QinQin Yu ◽  
Matti Gralka ◽  
Marie-Cécilia Duvernoy ◽  
Megan Sousa ◽  
Arbel Harpak ◽  
...  

AbstractDemographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude (compared to in the wild type). Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable trait of a population.


2020 ◽  
Author(s):  
QinQin Yu ◽  
Matti Gralka ◽  
Marie-Cécilia Duvernoy ◽  
Megan Sousa ◽  
Arbel Harpak ◽  
...  

AbstractDemographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude higher than the wild type. Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable phenotype of a population.


2020 ◽  
Vol 3 (10) ◽  
pp. e202000711 ◽  
Author(s):  
Ruchika Anand ◽  
Arun Kumar Kondadi ◽  
Jana Meisterknecht ◽  
Mathias Golombek ◽  
Oliver Nortmann ◽  
...  

Homologous apolipoproteins of MICOS complex, MIC26 and MIC27, show an antagonistic regulation of their protein levels, making it difficult to deduce their individual functions using a single gene deletion. We obtained single and double knockout (DKO) human cells of MIC26 and MIC27 and found that DKO show more concentric onion-like cristae with loss of CJs than any single deletion indicating overlapping roles in formation of CJs. Using a combination of complexome profiling, STED nanoscopy, and blue-native gel electrophoresis, we found that MIC26 and MIC27 are dispensable for the stability and integration of the remaining MICOS subunits into the complex suggesting that they assemble late into the MICOS complex. MIC26 and MIC27 are cooperatively required for the integrity of respiratory chain (super) complexes (RCs/SC) and the F1Fo–ATP synthase complex and integration of F1 subunits into the monomeric F1Fo–ATP synthase. While cardiolipin was reduced in DKO cells, overexpression of cardiolipin synthase in DKO restores the stability of RCs/SC. Overall, we propose that MIC26 and MIC27 are cooperatively required for global integrity and stability of multimeric OXPHOS complexes by modulating cardiolipin levels.


2020 ◽  
Vol 8 (8) ◽  
pp. 1186
Author(s):  
Adrien Beau Desaulniers ◽  
Nishka Kishore ◽  
Kelly Adames ◽  
Frank E. Nargang

The Neurospora crassa AOD1 protein is a mitochondrial alternative oxidase that passes electrons directly from ubiquinol to oxygen. The enzyme is encoded by the nuclear aod-1 gene and is produced when the standard electron transport chain is inhibited. We previously identified eleven strains in the N. crassa single gene deletion library that were severely deficient in their ability to produce AOD1 when grown in the presence of chloramphenicol, an inhibitor of mitochondrial translation that is known to induce the enzyme. Three mutants affected previously characterized genes. In this report we examined the remaining mutants and found that the deficiency of AOD1 was due to secondary mutations in all but two of the strains. One of the authentic mutants contained a deletion of the yvh1 gene and was found to have a deficiency of aod-1 transcripts. The YVH1 protein localized to the nucleus and a post mitochondrial pellet from the cytoplasm. A zinc binding domain in the protein was required for rescue of the AOD1 deficiency. In other organisms YVH1 is required for ribosome assembly and mutants have multiple phenotypes. Lack of YVH1 in N. crassa likely also affects ribosome assembly leading to phenotypes that include altered regulation of AOD1 production.


Author(s):  
Inés Portillo-Calderón ◽  
Miriam Ortiz-Padilla ◽  
Jose Manuel Rodríguez-Martínez ◽  
Belen de Gregorio-Iaria ◽  
Jesús Blázquez ◽  
...  

Abstract Objectives To explore the effect of combining defects in DNA repair systems with the presence of fosfomycin-resistant mechanisms to explain the mechanisms underlying fosfomycin heteroresistance phenotypes in Enterobacteriaceae. Materials and methods We used 11 clinical Escherichia coli isolates together with isogenic single-gene deletion mutants in the E. coli DNA repair system or associated with fosfomycin resistance, combined with double-gene deletion mutants. Fosfomycin MICs were determined by gradient strip assay (GSA) and broth microdilution (BMD). Mutant frequencies for rifampicin (100 mg/L) and fosfomycin (50 and 200 mg/L) were determined. Using two starting inocula, in vitro fosfomycin activity was assessed over 24 h in growth (0.5–512 mg/L) and time–kill assays (64 and 307 mg/L). Results Strong and weak mutator clinical isolates and single-gene deletion mutants, except for ΔuhpT and ΔdnaQ, were susceptible by GSA. By BMD, the percentage of resistant clinical isolates reached 36%. Single-gene deletion mutants showed BMD MICs similar to those for subpopulations by GSA. Strong mutators showed a higher probability of selecting fosfomycin mutants at higher concentrations. By combining the two mechanisms of mutation, MICs and ranges of resistant subpopulations increased, enabling strains to survive at higher fosfomycin concentrations in growth monitoring assays. In time–kill assays, high inocula increased survival by 37.5% at 64 mg/L fosfomycin, compared with low starting inocula. Conclusions The origin and variability of the fosfomycin heteroresistance phenotype can be partially explained by high mutation frequencies together with mechanisms of fosfomycin resistance. Subpopulations should be considered until clinical meaning is established.


Sign in / Sign up

Export Citation Format

Share Document