Role of nanoparticles in crop improvement and abiotic stress management

Author(s):  
Archana Singh ◽  
Shalini Tiwari ◽  
Jyotsna Pandey ◽  
Charu Lata ◽  
Indrakant K. Singh
Author(s):  
Soumya Brata Chakraborty ◽  
Abhijit Saha ◽  
Adyant Kumar ◽  
Sahar Murmu

Author(s):  
Ahmed Mohamed Eid ◽  
Salim S. Salim ◽  
Saad El-Din Hassan ◽  
Mohamed A. Ismail ◽  
Amr Fouda

2021 ◽  
Author(s):  
Ankita Yadav ◽  
Sanoj Kumar ◽  
Rita Verma ◽  
Shashi Pandey Rai ◽  
Charu Lata ◽  
...  

Abstract Legumes are an indispensable food after cereals with extensive production across the world. The legume production is imposed with limitations and has been augmented by various environmental stresses. The symbiotic relations between legumes and rhizobacteria have been an intriguing topic of research in view of their roles in plant growth, development and various stress responses. Recent advances on gene networks involving plethora of evolutionarily conserved miRNAs have been investigated pertaining to their roles in plant stress responses. The interaction between plant growth promoting rhizobacteria (PGPR) strain Pseudomonas putida RA, MTCC5279 and abiotic stress responsive miRNAs have previously been studied with roles in abiotic stress mitigation by modulating stress responsive miRNAs and their target genes. The present studyis an investigation involving the role of RA in abiotic stress responsive miR166h for drought mitigation in tolerant desi chickpea genotype. miRNA166 directed cleavage of its target, ATHB15 has been drifted of drought treated plantlets upon RA inoculation using 5´RLM-RACE analysis. Drought stressed chickpea plants when inoculated with growth promoting rhizobacteria, RA, the inverse correlation in expression patterns were noticed in miR166h and its validated target, ATHB15. Tissue-specific expression patterns in 15 days old chickpea seedlings including leaves, shoot and roots when exposed to salinity, drought and abscisic acid at different time points indicated the role of miR166 in different abiotic stress response. In view of the results, validation and functional characterization of such interactions involving stress responsive miRNAs along with microbial stress management techniques could be an important technique for crop improvement.


2001 ◽  
Vol 3 (1) ◽  
pp. 43-69 ◽  
Author(s):  
Mamta Rai ◽  
K. N. Srivastava

2019 ◽  
pp. 185-208
Author(s):  
Anket Sharma ◽  
Vinod Kumar ◽  
Gagan Preet Singh Sidhu ◽  
Rakesh Kumar ◽  
Sukhmeen Kaur Kohli ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 962
Author(s):  
Maciej Jerzy Bernacki ◽  
Anna Rusaczonek ◽  
Weronika Czarnocka ◽  
Stanisław Karpiński

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


Author(s):  
Sridevi Muppala ◽  
Pavan Kumar Gudlavalleti ◽  
Kodandarami Reddy Malireddy ◽  
Sateesh Kumar Puligundla ◽  
Premalatha Dasari

Abstract Background In crop plants, to cope up with the demand of food for rising population, revolutionary crop improvement programmes are being implemented for higher and higher yields. Abiotic stress, especially at flowering stage, causes drastic effect on yield in plants. Deforestation and urbanization made the water table very low and changed the climate which led to untimely and unforeseen rains which affect the yield of a crop through stress, both by lack of water as well as water logging (abiotic stress). Development of tolerant plants through breeding is a time-consuming programme and does not perform well in normal conditions. Development of stress-tolerant plants through transgenic technology is the better solution. Maize is a major crop used as food and fodder and has the commercial value in ethanol production. Hence, the genes viz., nced (9-cis-epoxycarotenoid dioxygenase) and rpk (receptor-like protein kinase), which play the key roles in the abscisic acid pathway and upstream component in ABA signaling have been transferred into maize plants through Agrobacterium-mediated transformation by optimizing several parameters to obtain maximum frequency of transformation. Results Cultures raised from immature embryos of 2-mm size isolated from maize cobs, 12–15 days after pollination, were used for transformation. rpk and nced genes under the control of leaP and salT promoters respectively, cloned using gateway technology, have been introduced into elite maize inbred lines. Maximum frequency of transformation was observed with the callus infected after 20 days of inoculation by using 100 μM acetosyringone, 10 min infection time, and 2 days incubation period after co-cultivation resulted in maximum frequency of transformation (6%) in the NM5884 inbred line. Integration of the genes has been confirmed with molecular characterization by performing PCRs with marker as well as gene-specific primers and through southern hybridization. Physiological and biochemical characterization was done in vitro (artificial stress) and in vivo (pot experiments). Conclusions Changes in the parameters which affect the transformation frequency yielded maximum frequency of transformation with 20-day-old callus in the NM5884 inbred line. Introducing two or more genes using gateway technology is useful for developing stable transgenic plants with desired characters, abiotic stress tolerance in this study.


2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


Sign in / Sign up

Export Citation Format

Share Document