scholarly journals Development of stable transgenic maize plants tolerant for drought by manipulating ABA signaling through Agrobacterium-mediated transformation

Author(s):  
Sridevi Muppala ◽  
Pavan Kumar Gudlavalleti ◽  
Kodandarami Reddy Malireddy ◽  
Sateesh Kumar Puligundla ◽  
Premalatha Dasari

Abstract Background In crop plants, to cope up with the demand of food for rising population, revolutionary crop improvement programmes are being implemented for higher and higher yields. Abiotic stress, especially at flowering stage, causes drastic effect on yield in plants. Deforestation and urbanization made the water table very low and changed the climate which led to untimely and unforeseen rains which affect the yield of a crop through stress, both by lack of water as well as water logging (abiotic stress). Development of tolerant plants through breeding is a time-consuming programme and does not perform well in normal conditions. Development of stress-tolerant plants through transgenic technology is the better solution. Maize is a major crop used as food and fodder and has the commercial value in ethanol production. Hence, the genes viz., nced (9-cis-epoxycarotenoid dioxygenase) and rpk (receptor-like protein kinase), which play the key roles in the abscisic acid pathway and upstream component in ABA signaling have been transferred into maize plants through Agrobacterium-mediated transformation by optimizing several parameters to obtain maximum frequency of transformation. Results Cultures raised from immature embryos of 2-mm size isolated from maize cobs, 12–15 days after pollination, were used for transformation. rpk and nced genes under the control of leaP and salT promoters respectively, cloned using gateway technology, have been introduced into elite maize inbred lines. Maximum frequency of transformation was observed with the callus infected after 20 days of inoculation by using 100 μM acetosyringone, 10 min infection time, and 2 days incubation period after co-cultivation resulted in maximum frequency of transformation (6%) in the NM5884 inbred line. Integration of the genes has been confirmed with molecular characterization by performing PCRs with marker as well as gene-specific primers and through southern hybridization. Physiological and biochemical characterization was done in vitro (artificial stress) and in vivo (pot experiments). Conclusions Changes in the parameters which affect the transformation frequency yielded maximum frequency of transformation with 20-day-old callus in the NM5884 inbred line. Introducing two or more genes using gateway technology is useful for developing stable transgenic plants with desired characters, abiotic stress tolerance in this study.

Author(s):  
Irene Garcia-Maquilon ◽  
Alberto Coego ◽  
Jorge Lozano-Juste ◽  
Maxim Messerer ◽  
Carlos de Ollas ◽  
...  

Abstract The identification of those prevalent abscisic acid (ABA) receptors and molecular mechanisms that trigger drought adaptation in crops well adapted to harsh conditions such as date palm (Phoenix dactylifera, Pd) sheds light on plant–environment interactions. We reveal that PdPYL8-like receptors are predominantly expressed under abiotic stress, with Pd27 being the most expressed receptor in date palm. Therefore, subfamily I PdPYL8-like receptors have been selected for ABA signaling during abiotic stress response in this crop. Biochemical characterization of PdPYL8-like and PdPYL1-like receptors revealed receptor- and ABA-dependent inhibition of PP2Cs, which triggers activation of the pRD29B-LUC reporter in response to ABA. PdPYLs efficiently abolish PP2C-mediated repression of ABA signaling, but loss of the Trp lock in the seed-specific AHG1-like phosphatase PdPP2C79 markedly impairs its inhibition by ABA receptors. Characterization of Arabidopsis transgenic plants that express PdPYLs shows enhanced ABA signaling in seed, root, and guard cells. Specifically, Pd27-overexpressing plants showed lower ABA content and were more efficient than the wild type in lowering transpiration at negative soil water potential, leading to enhanced drought tolerance. Finally, PdPYL8-like receptors accumulate after ABA treatment, which suggests that ABA-induced stabilization of these receptors operates in date palm for efficient boosting of ABA signaling in response to abiotic stress.


Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 90 ◽  
Author(s):  
Juhi Chaudhary ◽  
Praveen Khatri ◽  
Pankaj Singla ◽  
Surbhi Kumawat ◽  
Anu Kumari ◽  
...  

Tomato, one of the most important crops worldwide, has a high demand in the fresh fruit market and processed food industries. Despite having considerably high productivity, continuous supply as per the market demand is hard to achieve, mostly because of periodic losses occurring due to biotic as well as abiotic stresses. Although tomato is a temperate crop, it is grown in almost all the climatic zones because of widespread demand, which makes it challenge to adapt in diverse conditions. Development of tomato cultivars with enhanced abiotic stress tolerance is one of the most sustainable approaches for its successful production. In this regard, efforts are being made to understand the stress tolerance mechanism, gene discovery, and interaction of genetic and environmental factors. Several omics approaches, tools, and resources have already been developed for tomato growing. Modern sequencing technologies have greatly accelerated genomics and transcriptomics studies in tomato. These advancements facilitate Quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). However, limited efforts have been made in other omics branches like proteomics, metabolomics, and ionomics. Extensive cataloging of omics resources made here has highlighted the need for integration of omics approaches for efficient utilization of resources and a better understanding of the molecular mechanism. The information provided here will be helpful to understand the plant responses and the genetic regulatory networks involved in abiotic stress tolerance and efficient utilization of omics resources for tomato crop improvement.


2017 ◽  
Vol 8 ◽  
Author(s):  
Junling Luo ◽  
Shaohua Tang ◽  
Fengling Mei ◽  
Xiaojue Peng ◽  
Jun Li ◽  
...  

2017 ◽  
Vol 155 (10) ◽  
pp. 1497-1507 ◽  
Author(s):  
A. K. TRIVEDI ◽  
L. ARYA ◽  
S. K. VERMA ◽  
R. K. TYAGI ◽  
A. HEMANTARANJAN

SUMMARYThe mountain ecosystem of the Central Himalayan Region is known for its diversity of crops and their wild relatives. In spite of adverse climatic conditions, this region is endowed with a rich diversity of millets. Hence, the aim of the present study was to explore, collect, conserve and evaluate the diversity of barnyard millet (Echinochloa frumentacea) to find out the extent of diversity available in different traits and the traits responsible for abiotic stress tolerance, and to identify trait-specific accessions for crop improvement and also for the cultivation of millets in the region as well as in other similar agro-ecological regions. A total of 178 accessions were collected and evaluated for a range of morpho-physiological and biochemical traits. Significant variability was noted in days to 50% flowering, days to 80% maturity, 1000 seed weight and yield potential of the germplasm. These traits are considered to be crucial for tailoring new varieties for different agro-climatic conditions. Variations in biochemical traits such as lipid peroxidation (0·552–7·421 nmol malondialdehyde formed/mg protein/h), total glutathione (105·270–423·630 mmol/g fresh weight) and total ascorbate (4·980–9·880 mmol/g fresh weight) content indicate the potential of collected germplasm for abiotic stress tolerance. Principal component analysis also indicated that yield, superoxide dismutase activity, plant height, days to 50% flowering, catalase activity and glutathione content are suitable traits for screening large populations of millet and selection of suitable germplasm for crop improvement and cultivation. Trait-specific accessions identified in the present study could be useful in crop improvement programmes, climate-resilient agriculture and improving food security in areas with limited resources.


2017 ◽  
Author(s):  
Kira M. Veley ◽  
Jeffrey C. Berry ◽  
Sarah J. Fentress ◽  
Daniel P. Schachtman ◽  
Ivan Baxter ◽  
...  

ABSTRACTSorghum (Sorghum bicolor (L.) Moench) is a rapidly growing, high-biomass crop prized for abiotic stress tolerance. However, measuring genotype-by-environment (G × E) interactions remains a progress bottleneck. Here we describe strategies for identifying shape, color and ionomic indicators of plant nitrogen use efficiency. We subjected a panel of 30 genetically diverse sorghum genotypes to a spectrum of nitrogen deprivation and measured responses using high-throughput phenotyping technology followed by ionomic profiling. Responses were quantified using shape (16 measurable outputs), color (hue and intensity) and ionome (18 elements). We measured the speed at which specific genotypes respond to environmental conditions, both in terms of biomass and color changes, and identified individual genotypes that perform most favorably. With this analysis we present a novel approach to quantifying color-based stress indicators over time. Additionally, ionomic profiling was conducted as an independent, low cost and high throughput option for characterizing G × E, identifying the elements most affected by either genotype or treatment and suggesting signaling that occurs in response to the environment. This entire dataset and associated scripts are made available through an open access, user-friendly, web-based interface. In summary, this work provides analysis tools for visualizing and quantifying plant abiotic stress responses over time. These methods can be deployed as a time-efficient method of dissecting the genetic mechanisms used by sorghum to respond to the environment to accelerate crop improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianya Wang ◽  
Hongwei Xun ◽  
Wei Wang ◽  
Xiaoyang Ding ◽  
Hainan Tian ◽  
...  

Breeding of stress-tolerant plants is able to improve crop yield under stress conditions, whereas CRISPR/Cas9 genome editing has been shown to be an efficient way for molecular breeding to improve agronomic traits including stress tolerance in crops. However, genes can be targeted for genome editing to enhance crop abiotic stress tolerance remained largely unidentified. We have previously identified abscisic acid (ABA)-induced transcription repressors (AITRs) as a novel family of transcription factors that are involved in the regulation of ABA signaling, and we found that knockout of the entire family of AITR genes in Arabidopsis enhanced drought and salinity tolerance without fitness costs. Considering that AITRs are conserved in angiosperms, AITRs in crops may be targeted for genome editing to improve abiotic stress tolerance. We report here that mutation of GmAITR genes by CRISPR/Cas9 genome editing leads to enhanced salinity tolerance in soybean. By using quantitative RT-PCR analysis, we found that the expression levels of GmAITRs were increased in response to ABA and salt treatments. Transfection assays in soybean protoplasts show that GmAITRs are nucleus proteins, and have transcriptional repression activities. By using CRISPR/Cas9 to target the six GmAITRs simultaneously, we successfully generated Cas9-free gmaitr36 double and gmaitr23456 quintuple mutants. We found that ABA sensitivity in these mutants was increased. Consistent with this, ABA responses of some ABA signaling key regulator genes in the gmaitr mutants were altered. In both seed germination and seedling growth assays, the gmaitr mutants showed enhanced salt tolerance. Most importantly, enhanced salinity tolerance in the mutant plants was also observed in the field experiments. These results suggest that mutation of GmAITR genes by CRISPR/Cas9 is an efficient way to improve salinity tolerance in soybean.


2021 ◽  
Author(s):  
M. Akhlasur Rahman ◽  
Hasina Khatun ◽  
M. Ruhul Amin Sarker ◽  
Hosneara Hossain ◽  
M. Ruhul Quddus ◽  
...  

Agricultural land and resources reduced annually because of climate change thus it is necessary to further increase the productivity of the major staple food rice to sustain food security worldwide. However, rice productivity enhancement is one of the key challenges in abiotic stress-prone environments. The integration of cutting-edge breeding approaches and research management methods in the current varietal improvement pipelines can make a step-change towards varietal improvement for the abiotic stress-prone environments. Proper implementation of breeder’s equations in the crop improvement pipeline can deliver a higher rate of genetic gain. Single Seed Descent based Rapid Generation Advance (RGA) technique in field and greenhouse is the most promising innovations and low-cost, high-throughput marker-assisted selection approaches are applied for rapid and efficient selection for abiotic stress-tolerances. Also improving efficiency, intensity, and accuracy of selection and reducing breeding cycle time through holistic rice breeding that can play an important role in developing climate-smart abiotic stress-tolerant rice for target environments. This information can use as the future direction for rice breeders and other researchers.


2020 ◽  
Author(s):  
Irene Garcia-Maquilon ◽  
Alberto Coego ◽  
Jorge Lozano-Juste ◽  
Maxim Messerer ◽  
Carlos de Ollas ◽  
...  

AbstractThe identification of those prevailing ABA receptors and molecular mechanisms that trigger drought adaptation in crops well adapted to harsh conditions such as date palm (Phoenix dactylifera, Pd) sheds light on plant-environment interactions. We reveal that PdPYL8-like receptors are predominantly expressed under abiotic stress, being Pd27 the most expressed receptor in date palm. Therefore, subfamily I PdPYL8-like receptors have been selected for ABA signaling during abiotic stress response in this crop. Biochemical characterization of PdPYL8-like and PdPYL1-like receptors revealed receptor- and ABA-dependent inhibition of PP2Cs, which triggers activation of the pRD29B-LUC reporter in response to ABA. PdPYLs efficiently abolish PP2C-mediated repression of ABA signaling, but loss of the Trp lock in the seed-specific AHG1-like phosphatase PdPP2C79 markedly impairs its inhibition by ABA receptors. Characterization of Arabidopsis transgenic plants that express PdPYLs shows enhanced ABA signaling in seed, root and guard cells. Specifically, Pd27 overexpressing (OE) plants showed lower ABA content and were more efficient than wild type to lower transpiration at negative soil water potential, leading to enhanced drought tolerance. Finally, PdPYL8-like receptors accumulate after ABA treatment, which suggests that ABA-induced stabilization of these receptors operates in date palm for efficient boosting of ABA signaling in response to abiotic stress.HighlightDate palm response to abiotic stress is triggered through PYL8-like ABA receptors that are stabilized by the hormone, which boosts plant adaptation to drought mediated by ABA.


Sign in / Sign up

Export Citation Format

Share Document