scholarly journals Burkholderia cepacia selective agar can be useful for recovery of Exophiala dermatitidis from sputum samples of cystic fibrosis patients

2016 ◽  
Vol 15 (2) ◽  
pp. e19 ◽  
Author(s):  
Vladislav Raclavsky ◽  
Radko Novotny
2016 ◽  
Vol 54 (7) ◽  
pp. 1797-1803 ◽  
Author(s):  
Clair L. Preece ◽  
Thomas A. Wichelhaus ◽  
Audrey Perry ◽  
Amanda L. Jones ◽  
Stephen P. Cummings ◽  
...  

Isolation of nontuberculous mycobacteria (NTM) from the sputum of patients with cystic fibrosis (CF) is challenging due to overgrowth by rapidly growing species that colonize the lungs of patients with CF. Extended incubation onBurkholderia cepaciaselective agar (BCSA) has been recommended as an expedient culture method for the isolation of rapidly growing NTM in this setting. The aim of this study was to assess five selective media designed for the isolation ofBurkholderia cepaciacomplex, along with two media designed for the isolation of mycobacteria (rapidly growing mycobacteria [RGM] medium and Middlebrook 7H11 agar), for their abilities to isolate NTM. All seven media were challenged with 147 isolates of rapidly growing mycobacteria and 185 isolates belonging to other species. RGM medium was then compared with the most selective brand of BCSA for the isolation of NTM from 224 sputum samples from patients with CF. Different agars designed for the isolation ofB. cepaciacomplex varied considerably in their inhibition of other bacteria and fungi. RGM medium supported the growth of all isolates of mycobacteria and was more selective than any other medium. NTM were recovered from 17 of 224 sputum samples using RGM medium, compared with only 7 samples using the most selective brand of BCSA (P= 0.023). RGM medium offers a superior option, compared to other selective agars, for the isolation of rapidly growing mycobacteria from the sputum of patients with CF. Furthermore, the convenience of using RGM medium enables routine screening for rapidly growing NTM in all submitted sputum samples from patients with CF.


2021 ◽  
Vol 9 (12) ◽  
pp. 2604
Author(s):  
Emma C.L. Marrs ◽  
Audrey Perry ◽  
John D. Perry

Burkholderia cepacia complex (BCC) is a significant pathogen causing respiratory disease in individuals with cystic fibrosis (CF). Diagnosis is typically achieved by isolation of BCC on selective culture media following culture of sputum or other respiratory samples. The aim of this study was to compare the efficacy of three commercially available selective media for the isolation of BCC. The three media comprised Burkholderia cepacia selective agar (BCSA; bioMérieux), BD Cepacia medium (BD: Becton–Dickinson) and MAST Cepacia medium (MAST laboratories). Each medium was challenged with 270 respiratory samples from individuals with CF as well as an international collection of BCC (n = 26) and 14 other isolates of Burkholderia species at a range of inocula. The international collection was also used to artificially “spike” 26 respiratory samples. From a total of 34 respiratory samples containing BCC, 97% were recovered on BD and 94% were detected on MAST and BCSA. All three media were effective for isolation of BCC. BCSA was much more selective than the other two media (p < 0.0001) meaning that fewer isolates required processing to exclude the presence of BCC.


2017 ◽  
Vol 55 (5) ◽  
pp. 1469-1477 ◽  
Author(s):  
Rongpong Plongla ◽  
Clair L. Preece ◽  
John D. Perry ◽  
Peter H. Gilligan

ABSTRACTA novel selective agar (RGM medium) has been advocated for the isolation of rapidly growing mycobacteria from the sputa of cystic fibrosis (CF) patients. The aim of this study was to compare RGM medium toBurkholderia cepaciaselective agar (BCSA) and a standard acid-fast bacillus (AFB) culture method for the isolation of nontuberculous mycobacteria (NTM) from patients with CF. The applicability of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for the identification of NTM isolated on RGM medium was also assessed. Respiratory samples (n= 869) were collected from 487 CF patients and inoculated directly onto RGM medium and BCSA. Cultures were incubated at 30°C and examined for up to 28 days. A subset of 212 samples (from 172 patients) was also cultured by using a mycobacterial growth indicator tube (MGIT) and on Lowenstein-Jensen medium following dual decontamination. By using a combination of all methods, 98 mycobacteria were isolated from 869 samples (11.3%). The sensitivity of RGM medium (96.9%) was significantly higher than that of BCSA (35.7%) for the isolation of mycobacteria (P< 0.0001). The sensitivity of RGM medium was also superior to that of standard AFB culture for the isolation of mycobacteria (92.2% versus 47.1%;P< 0.0001). MALDI-TOF MS was effective for the identification of mycobacteria in RGM medium. RGM medium offers a simple and highly effective tool for the isolation of NTM from patients with CF. Extended incubation of RGM medium for 28 days facilitates the isolation of slow-growing species, including members of theMycobacterium aviumcomplex (MAVC).


1999 ◽  
Vol 37 (4) ◽  
pp. 1004-1007 ◽  
Author(s):  
Deborah Henry ◽  
Maureen Campbell ◽  
Colleen McGimpsey ◽  
Alison Clarke ◽  
Laurie Louden ◽  
...  

Burkholderia cepacia selective agar (BCSA) has previously been devised for isolation of B. cepacia from respiratory secretions of patients with cystic fibrosis and tested under research laboratory conditions. Here we describe a study in which BCSA, oxidation-fermentation polymyxin bacitracin lactose agar (OFPBL), and Pseudomonas cepacia agar (PCA) were compared in routine culture procedures for the ability to grow B. cepacia and inhibit other organisms. Three hundred twenty-eight specimens from 209 patients at two pediatric centers and 328 specimens from 109 adults were tested. Plates were inoculated, incubated, and read for quality and quantity of growth at 24, 48, and 72 h. Five (1.5%) specimens from 4 (1.9%) children and 75 (22.9%) specimens from 16 (14.7%) adults grew B. cepacia complex. At 24, 48, and 72 h, BCSA achieved 43, 93, and 100% detection, respectively; OFPBL achieved 26, 84, and 96%, respectively; and PCA achieved 33, 74, and 84% detection, respectively. Quality was assessed as pinpoint or good growth. At 24 h, most cultures growing B. cepaciacomplex had pinpoint colonies. By 48 and 72 h, 48 and 69% ofB. cepacia complex cultures, respectively, had good growth on BCSA, while on OFPBL 19 and 30%, respectively, had good growth and on PCA 11 and 18%, respectively, had good growth. BCSA was superior to OFPBL and PCA in suppressing organisms other than B. cepacia complex; 40 non-B. cepacia complex organisms were isolated from BCSA, 263 were isolated from OFPBL, and 116 were isolated from PCA. We conclude that BCSA is superior to OFPBL and PCA in its ability to support the growth of B. cepacia complex and to suppress other respiratory organisms.


2013 ◽  
Vol 31 (10) ◽  
pp. 665-668 ◽  
Author(s):  
Laura Barrado ◽  
M. Teresa Martinez ◽  
Jennifer Villa ◽  
M. Ángeles Orellana ◽  
Esther Viedma ◽  
...  

2002 ◽  
Vol 70 (5) ◽  
pp. 2715-2720 ◽  
Author(s):  
Karen K. Chu ◽  
Donald J. Davidson ◽  
T. Keith Halsey ◽  
Jacqueline W. Chung ◽  
David P. Speert

ABSTRACT Cystic fibrosis patients infected with strains from different genomovars of the Burkholderia cepacia complex can experience diverse clinical outcomes. To identify genomovar-specific determinants that might be responsible for these differences, we developed a pulmonary model of infection in BALB/c mice. Mice were rendered leukopenic by administration of cyclophosphamide prior to intranasal challenge with 1.6 × 104 bacteria. Five of six genomovar II strains persisted at stable numbers in the lungs until day 16 with minimal toxicity, whereas zero of seven genomovar III strains persisted but resulted in variable toxicity. We have developed a chronic pulmonary model of B. cepacia infection which reveals differences among genomovars in terms of clinical infection outcome.


2014 ◽  
Vol 13 (4) ◽  
pp. 391-399 ◽  
Author(s):  
Nahid Kondori ◽  
Anders Lindblad ◽  
Christina Welinder-Olsson ◽  
Christine Wennerås ◽  
Marita Gilljam

1999 ◽  
Vol 43 (6) ◽  
pp. 1435-1440 ◽  
Author(s):  
Ute Schwab ◽  
Peter Gilligan ◽  
Jesse Jaynes ◽  
David Henke

ABSTRACT The emergence of multidrug-resistant pathogens renders antibiotics ineffective in the treatment of lung infections in patients with cystic fibrosis (CF). Designed antimicrobial peptides (DAPs) are laboratory-synthesized peptide antibiotics that demonstrate a wide spectrum of antibacterial activity. Optimal conditions for susceptibility testing of these peptides have not yet been established. Medium composition is clearly a major factor influencing the results and reproducibilities of susceptibility tests. Using time-kill assays, we tested the effects of different media and buffers on the bactericidal activities of the peptides D2A21 and D4E1 onStaphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853. Each peptide at 1 and 5 μM was incubated with bacteria in the different media and buffers. Both peptides were most active in Tris-HCl buffer against S. aureus andP. aeruginosa. Among the more complex media tested, modified RPMI medium was the medium in which the peptides demonstrated the highest activity, while it supported the growth of the bacteria. The broth microdilution technique was used to test the activities of D2A21 and D4E1 in modified RPMI medium against multidrug-resistant pathogens from patients with CF. The MICs of DAPs for methicillin-resistant S. aureus ranged from 0.25 to 4 μg/ml, those for multidrug-resistant P. aeruginosa ranged from 0.125 to 4 μg/ml, those for Stenotrophomonas maltophilia ranged from 0.5 to 32 μg/ml, and those forBurkholderia cepacia ranged from 32 to ≥64 μg/ml. When the activity of peptide D2A21 was compared with that of the tracheal antimicrobial peptide (TAP), D2A21 had greater potency than TAP againstP. aeruginosa. In addition, no difference in the MICs of D2A21 was seen when it was tested in nutrient broth supplemented with NaCl at different concentrations. Thus, DAPs are a class of salt-insensitive antibiotics potentially useful in the treatment of CF patients harboring multidrug-resistant P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document