Quantification of 6-nitrodopamine in Krebs-Henseleit’s solution by LC-MS/MS for the assessment of its basal release from Chelonoidis carbonaria aortae in vitro

2021 ◽  
pp. 122668
Author(s):  
Rafael Campos ◽  
David Halen Araújo Pinheiro ◽  
José Britto-Júnior ◽  
Heleson Alves de Castro ◽  
Gustavo Duarte Mendes ◽  
...  
Keyword(s):  
Endocrinology ◽  
2019 ◽  
Vol 161 (2) ◽  
Author(s):  
Sandra Handgraaf ◽  
Rodolphe Dusaulcy ◽  
Florian Visentin ◽  
Jacques Philippe ◽  
Yvan Gosmain

Abstract Characterization of enteroendocrine L cells in diabetes is critical for better understanding of the role of glucagon-like peptide-1 (GLP-1) in physiology and diabetes. We studied L-cell transcriptome changes including microRNA (miRNA) dysregulation in obesity and diabetes. We evaluated the regulation of miRNAs through microarray analyses on sorted enteroendocrine L cells from control and obese glucose-intolerant (I-HFD) and hyperglycemic (H-HFD) mice after 16 weeks of respectively low-fat diet (LFD) or high-fat diet (HFD) feeding. The identified altered miRNAs were studied in vitro using the mouse GLUTag cell line to investigate their regulation and potential biological functions. We identified that let-7e-5p, miR-126a-3p, and miR-125a-5p were differentially regulated in L cells of obese HFD mice compared with control LFD mice. While downregulation of let-7e-5p expression was observed in both I-HFD and H-HFD mice, levels of miR-126a-3p increased and of miR-125a-5p decreased significantly only in I-HFD mice compared with controls. Using miRNA inhibitors and mimics we observed that modulation of let-7e-5p expression affected specifically GLP-1 cellular content and basal release, whereas Gcg gene expression and acute GLP-1 secretion and cell proliferation were not affected. In addition, palmitate treatment resulted in a decrease of let-7e-5p expression along with an increase in GLP-1 content and release, suggesting that palmitate acts on GLP-1 through let-7e-5p. By contrast, modulation of miR-125a-5p and miR-126a-3p in the same conditions did not affect content or secretion of GLP-1. We conclude that decrease of let-7e-5p expression in response to palmitate may constitute a compensatory mechanism contributing to maintaining constant glycemia in obese mice.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 493
Author(s):  
 Chung-Yu Chen ◽  
Chien-Rung Chen ◽  
Chiao-Nan Chen ◽  
Paulus S. Wang ◽  
Toby Mündel ◽  
...  

The purpose of this study is to evaluate the amphetamine effects on progesterone and estradiol production in rat granulosa cells and the underlying cellular regulatory mechanisms. Freshly dispersed rat granulosa cells were cultured with various test drugs in the presence of amphetamine, and the estradiol/progesterone production and the cytosolic cAMP level were measured. Additionally, the cytosolic-free Ca2+ concentrations ([Ca2+]i) were measured to examine the role of Ca2+ influx in the presence of amphetamine. Amphetamine in vitro inhibited both basal and porcine follicle-stimulating hormone-stimulated estradiol/progesterone release, and amphetamine significantly decreased steroidogenic enzyme activities. Adding 8-Bromo-cAMP did not recover the inhibitory effects of amphetamine on progesterone and estradiol release. H89 significantly decreased progesterone and estradiol basal release but failed to enhance a further amphetamine inhibitory effect. Amphetamine was capable of further suppressing the release of estradiol release under the presence of nifedipine. Pretreatment with the amphetamine for 2 h decreased the basal [Ca2+]i and prostaglandin F2α-stimulated increase of [Ca2+]i. Amphetamine inhibits progesterone and estradiol secretion in rat granulosa cells through a mechanism involving decreased PKA-downstream steroidogenic enzyme activity and L-type Ca2+ channels. Our current findings show that it is necessary to study the possibility of amphetamine perturbing reproduction in females.


1985 ◽  
Vol 249 (3) ◽  
pp. E276-E280 ◽  
Author(s):  
W. S. Evans ◽  
R. J. Krieg ◽  
E. R. Limber ◽  
D. L. Kaiser ◽  
M. O. Thorner

The effects of gender and the gonadal hormone environment on basal and stimulated growth hormone (GH) release by dispersed and continuously perifused rat anterior pituitary cells were examined. Cells from intact male and diestrus day 2 female rats and from castrate male rats either untreated or treated with testosterone (T) or 17 beta-estradiol (E2) were used. Basal GH release (ng/min per 10(7) cells; mean +/- SE) by cells from diestrus day 2 female rats was less than by cells from castrate rats treated with T (4.3 +/- 0.6 vs. 11.4 +/- 2.7, respectively; P less than 0.025). No other differences in basal release were detected. Concentration-response relationships were documented between human GH-releasing factor 40 (hGRF-40; 0.03-100 nM given as 2.5-min pulses every 27.5 min) and GH release. Mean (+/- SE) overall GH release (ng/min per 10(7) cells) above base line was greater by cells from intact male rats (496 +/- 92) than by cells from castrate (203 +/- 37.3; P less than 0.0001), castrate and T-treated (348 +/- 52.8; P = 0.008), or castrate and E2-treated (58.1 +/- 6.8; P less than 0.001) male rats or by diestrus day 2 rats (68.6 +/- 9.5; P = 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 100 (2) ◽  
pp. 219-226 ◽  
Author(s):  
S. A. Nicholson ◽  
T. E. Adrian ◽  
B. Gillham ◽  
M. T. Jones ◽  
S. R. Bloom

ABSTRACT The effect of six hypothalamic peptides on the basal release of ACTH and that induced by arginine vasopressin (AVP) or by ovine corticotrophin releasing factor (oCRF) from fragments of the rat anterior pituitary gland incubated in vitro was investigated. Dose–response curves to AVP and to oCRF were obtained, and the response to a low dose of oCRF was potentiated by a low dose of AVP. Basal release of ACTH was not affected by any of the peptides in concentrations in the range 10−12 to 10−6 mol/l, and only substance P (SP) and somatostatin (SRIF) inhibited significantly the response to oCRF in a dose-related manner. The responses to a range of doses of oCRF or AVP were reduced by 10−8 and 10 − 6 mol SP or SRIF/1, and to a greater extent by the higher dose. Except in the case of 10−6 mol SRIF/1 on the response to AVP, the response was not further diminished by preincubation of the tissue with the peptide before the stimulating agent was added. The inhibition of the responses to AVP or oCRF by 10−9 mol SP/1 was not potentiated by its combination with either 5 × 10−10 or 10−8 mol SRIF/1; the inhibitory effects were merely additive. The results suggest that although SRIF and SP are able to modulate the release of ACTH from the anterior pituitary gland, they do so only at a high concentration. In the case of SRIF these concentrations are several orders of magnitude higher than those reported to be present in the hypophysial portal blood and therefore a physiological role for this peptide in the control of ACTH secretion is unlikely. J. Endocr. (1984) 100, 219–226


1988 ◽  
Vol 254 (2) ◽  
pp. G217-G223 ◽  
Author(s):  
P. Singh ◽  
I. Asada ◽  
A. Owlia ◽  
T. J. Collins ◽  
J. C. Thompson

We have examined the direct effect of somatostatin (SRIF) on basal and stimulated amylase release from guinea pig pancreatic acini using the in vitro method of continuous perifusion. The optimal conditions of flow rate, chamber size, acinar cell volume per chamber, and period of secretagogue infusion were defined for the perifusion system. The kinetic profile of amylase release in response to cholecystokinin-octapeptide (CCK-8), vasoactive intestinal peptide (VIP), and SRIF was studied. Under optimal conditions, the acini were found to remain equally responsive to an ED50 dose of CCK-8 (0.5-0.8 nM) for 12 h of perifusion. The duration of amylase response to any given dose of CCK-8, given for the optimal period of 5 min, was 80-100 min. The total amylase released minus the basal release divided by 90 min (delta response) in response to the maximum effective (Maxeff) dose of CCK-8 (100 nM) was 14,667 +/- 1,433 U/l (amounting to a 10-fold increase compared with basal values). When compared with the amount of total delta amylase released in response to the Maxeff dose of CCK, the total amylase released in response to the Maxeff doses of SRIF (1 microM) and VIP (10 nM) was 10-21% and 51-59%, respectively. SRIF (100 nM) significantly decreased VIP- (0.1-1.0 nM) stimulated amylase release by 45-70% in the perifusion method of study but had no significant effect on the CCK-stimulated amylase release. This suggests that the perifusion method can be used for investigating the mechanism of SRIF-mediated inhibition of VIP effects on amylase release in an in vitro system.


1988 ◽  
Vol 119 (3) ◽  
pp. 421-429 ◽  
Author(s):  
C. Foltzer-Jourdainne ◽  
S. Harvey ◽  
P. Mialhe

ABSTRACT Release of GH from perifused duckling hemipituitaries was stimulated, in a biphasic manner, by synthetic TRH and human pancreatic GH-releasing factor (GRF). At all effective concentrations, the level of GH release was increased within 5 min of TRH or GRF perifusion and was maximal after 10 min of TRH perifusion and after 20 min of GRF perifusion. Although TRH was perifused for 20 min the level of GH release declined during the last 10 min. The most effective dose of TRH (1·0 μg/ml; 2·7 μmol/l) and GRF (0·5 μg/ml; 110 nmol/l) provoked similar (250– 300%) increases in the level of GH release. However, since the effect of TRH was only of short duration, the total release of GH induced by GRF was higher than that elicited by TRH, especially with the low dose. The increase in release of GH induced by TRH or GRF was blunted when pituitaries from adult ducks were used. As in young ducks, the GH response to GRF was higher, whereas the response to TRH was very low. The GH response of perifused adult pituitaries to GRF was, however, potentiated when TRH was perifused simultaneously. The basal release of GH from both young and adult pituitary glands was unaffected by perifusion with somatostatin-14 (SRIF-14) at doses of 1 and 2 μg/ml. The perifusion of hemipituitary glands with similar doses of SRIF-14 was also unable to suppress the stimulation of GH release induced by prior perifusion with GRF, although when SRIF-14 and TRH were simultaneously perifused TRH-induced GH release was markedly suppressed. These results demonstrate direct effects and interactions of TRH, GRF and SRIF on the release of GH from duck pituitary glands. GRF is the most potent releasing factor for GH in both young and adult ducks although in adult ducks it is less effective. These results also provide evidence that the age-related decline in the in-vivo GH response to TRH is due to a desensitization of pituitary somatotrophs. J. Endocr. (1988) 119, 421–429


1989 ◽  
Vol 122 (1) ◽  
pp. 15-22 ◽  
Author(s):  
A. N. Brooks ◽  
L. A. Power ◽  
S. A. Jones ◽  
K. P. Yang ◽  
J. R. G. Challis

ABSTRACT Corticotrophin-releasing factor (CRF) is thought to be an important physiological regulator of the pituitary-adrenal axis in fetal sheep and, as such, plays a fundamental role in the initiation of parturition in this species. However, little is known of the controls of CRF secretion from the fetal hypothalamus. We looked for the presence of CRF in fetal hypothalami, and examined whether the hypothalamic CRF concentration or molecular species changed in relation to gestational age. We established an in-vitro perifusion system to examine the release of CRF from perifused hypothalami taken from fetuses at day 100 and day 140 of pregnancy, under basal conditions and in response to potassium depolarization and/or dexamethasone administration. Immunoreactive CRF was present in fetal hypothalami as early as day 100 (2·42 ± 0·99 (s.e.m.) μg/g protein, n = 9) and in similar concentrations at day 140 (2·31 ± 0·69 μg/g protein, n = 9). There was a significant (P < 0·05) increase in hypothalamic CRF content to 14·79 ± 4·09 μg/g protein (n = 16) between day 122 and day 135 of gestation. Using Sephadex G-75 chromatography, hypothalamic extracts at day 100, days 122–135 and day 140 eluted with a single peak of immunoreactivity which corresponded to synthetic ovine CRF(1–41). The basal release of CRF from perifused hypothalami at day 140 (76·6 ± 10·4 pg/fraction, n = 8) was significantly (P < 0·05) greater than at day 100 (50·1 ± 10·2 pg/fraction, n = 11). Dexamethasone significantly inhibited basal CRF release at day 140 of gestation but not at day 100. Potassium depolarization caused a rapid release of CRF in all cases, a response which was independent of gestational age or treatment with dexamethasone. We conclude that the fetal hypothalamus contains immunoreactive CRF as early as day 100 of gestation and that this material may be released when perifused in vitro under basal conditions and in response to a depolarizing agent. The basal release of CRF from perifused hypothalami of day-140 fetuses was greater than at day 100 and was inhibited by dexamethasone, suggesting maturation of negative feedback control of CRF output between days 100 and 140. Since dexamethasone had no effect on potassium-stimulated release of CRF, we suggest that its effects are at sites other than the hypothalamic CRF nerve terminals. Journal of Endocrinology (1989) 122, 15–22


1999 ◽  
pp. 512-520 ◽  
Author(s):  
JJ Evans ◽  
S Janmohamed

OBJECTIVE: Production of the appropriate pattern of gonadotrophin levels is crucial to proper functioning of the female reproductive system. We aimed to establish whether the pituitary has invariant secretory characteristics when isolated from in vivo controls. We aimed to obtain information during both the rising and declining phases of the gonadotrophin surge. DESIGN: This study investigated factors that are directed at the pituitary by isolating it from the acute influences of the in vivo environment and studying gonadotrophin secretion in vitro. METHODS: Pituitaries of adult female rats were collected at selected times during the day of pro-oestrus and incubated in vitro, and at the same time blood was collected. Peripheral levels of LH and FSH were measured over the whole day of pro-oestrus, basal in vitro secretions of LH and FSH from pituitaries were measured, GnRH-stimulated LH and FSH secretion were assessed, and the responsiveness of LH and FSH secretion to GnRH were calculated. RESULTS: Peripheral levels of LH peaked at 1800 h (P<0.02) followed by a subsequent decline. In contrast, although FSH had a peak at 1800 h (P<0.01), serum levels were also high at the end pro-oestrus. The profile of basal LH and FSH secretion from the pituitary in vitro, in the absence of added secretagogue, resembled that of the peripheral blood levels of each gonadotrophin. Pituitaries collected at 1800 h secreted most LH (P<0. 02). FSH secretion was low early on the day of pro-oestrus and then increased to and was maintained at high levels in the last quarter of the day (P<0.01).When the pituitaries were stimulated with GnRH the patterns of LH release and FSH release approximated those observed for basal release. Responsiveness of the pituitaries to GnRH was calculated by determining the ratio of GnRH-stimulated release to basal release. However, low levels of gonadotrophin were secreted even from pituitaries which were highly responsive as determined from consideration of percentage increase in secretion induced by GnRH. CONCLUSIONS: The secretory activity was dependent on the time of day the pituitaries were collected. Since the secretion occurred after the tissue had been removed from the direct influence of the in vivo environment, the variations in secretion must reflect long-lasting components of the mechanism that regulate gonadotrophin concentrations. There were changes in both LH and FSH responsiveness to GnRH stimulation over the day of pro-oestrus. Delineation of the time courses and changing predominance of multiple processes is needed to assist understanding the mechanisms underlying the female reproductive cycle.


1996 ◽  
Vol 271 (5) ◽  
pp. H2045-H2051 ◽  
Author(s):  
X. L. Ma ◽  
B. L. Lopez ◽  
T. A. Christopher ◽  
D. S. Birenbaum ◽  
J. Vinten-Johansen

This study tested the hypothesis that exogenous nitric oxide (NO) inhibits basal release of NO in isolated rat aortic rings and in vivo. Thoracic aortic rings were suspended in organ chambers with Krebs-Henseleit solution. In untreated rings, the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) markedly increased basal vascular tone by 34.6 +/- 5.2% of maximal force produced by 100 nM thromboxane A2 mimetic U-46619, indicating a basal release of NO. Other rings were pretreated with the exogenous NO donor S-nitroso-N-acetylpenicillamine (SNAP) for 20 min and then washed free of drug. In these rings, L-NAME-induced vasoconstriction was significantly attenuated in a concentration-dependent manner (from 34.6 +/- 5.2 to 25.7 +/- 2.9% at SNAP = 0.5 microM, 15.2 +/- 3.1% at 1 microM, and 11.9 +/- 2.5% at 5 microM), while having no effect on NO-independent phenylephrine-induced vasoconstriction (35.4 +/- 4.7 untreated vs. 41.3 +/- 4.3% SNAP pretreated, not significant). In addition, the nonnitrosylated parent molecule of SNAP, acetylpenicillamine, had no effect on the vasoconstriction induced by L-NAME. In the in vivo studies in anesthetized rats, L-NAME caused significant hypertensive responses (34 +/- 4-mmHg increase in mean arterial blood pressure). Subvasoactive doses of SNAP attenuated these hypertensive responses in a dose-dependent manner (20 +/- 3-mmHg increase with 10 micrograms/kg SNAP pretreatment and 16 +/- 4-mmHg increase with 20 micrograms/kg SNAP pretreatment), but any dose of acetylpenicillamine studied had no effect. Coadministration of superoxide dismutase and SNAP significantly potentiated the inhibitory effect of the NO donor on vasocontraction responses to L-NAME. Furthermore, SNAP did not attenuate the hypertensive responses to phenylephrine. These results indicate that exogenous NO significantly inhibits basal NO release both in vitro and in vivo, suggesting that NO plays an important negative-feedback regulatory role under physiological conditions.


Sign in / Sign up

Export Citation Format

Share Document