Surface tension and adsorption kinetics of amphiphiles in aqueous solutions: The role of carbon chain length and temperature

2012 ◽  
Vol 370 (1) ◽  
pp. 183-191 ◽  
Author(s):  
Abdolhamid Firooz ◽  
P. Chen

Studies have been made of the quantitative rôle of pent-1-ene and pent-2-ene in the combustion of pentane at temperatures below 400°C. The present results show that, under these conditions, pentenes are initial and direct products of pentane combustion and pent-2-ene is the principal conjugate alkene formed [1- 14 C]Pent-1-ene and [2- 14 C]pent-2-ene have been synthesized and the combustion of pentane has also been investigated in the presence of small concentrations of these specifically labelled com­pounds; control experiments have shown that the pentenes, in the amounts added, do not interfere appreciably with the kinetics of pentane combustion. Measurements of the variation with time of the specific activities and concentrations of the pentenes enable the separate rates of formation and destruction of the conjugate alkenes to be determined. Hence it is possible to calculate the total quantities of these compounds formed at different stages of reaction and to show to what extent these are greater than the net amounts revealed by conventional analytical measurements; the differences are found to be most marked at small conversions. The reactivity ratios of pentane and the pentenes have also been determined. The rates of destruction of both pentenes are much greater than that of pentane; pent-2-ene is removed from the system roughly twice as fast as pent-1-ene. An important contrast between the behaviour of pentane and butane is that, between 300 and 400°C, but-1-ene is a much more abundant product than but-2-ene. However, with both alkanes, the relative amounts of the alk-1-enes formed become greater as the temperature is increased; indeed, the rate of formation of pent-1-ene considerably exceeds that of pent-2-ene at the instant of the passage of a strong cool flame. Comparison of the total amounts of conjugate alkenes formed from the two alkanes at 315°C shows that only ca . 30% of the pentane consumed is converted to pentenes, whereas nearly 75% of the butane which has reacted is converted to butenes. Thus there is clearly a sharp decrease in the quantitative importance of conjugate alkenes as the carbon chain length is increased from C 4 to C 5 . This suggests that the predominant reaction of pentyl radicals, under the conditions used, is to add on oxygen to form pentylperoxy radicals.


2016 ◽  
Vol 18 (7) ◽  
pp. 5499-5508 ◽  
Author(s):  
Venkateshwar Rao Dugyala ◽  
Jyothi Sri Muthukuru ◽  
Ethayaraja Mani ◽  
Madivala G. Basavaraj

The dynamic surface tension measurements are used to elucidate the contribution of electrostatic interaction energy barriers for the adsorption of nano-particles to the interfaces.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1060
Author(s):  
Cesar Torres-Luna ◽  
Naiping Hu ◽  
Roman Domszy ◽  
Xin Fan ◽  
Jeff Yang ◽  
...  

This paper explores the use of fatty acids in silicone hydrogel contact lenses for extending the release duration of cationic drugs. Drug release kinetics was dependent on the carbon chain length of the fatty acid loaded in the lens, with 12-, 14- and 18-carbon chain length fatty acids increasing the uptake and the release duration of ketotifen fumarate (KTF) and tetracaine hydrochloride (THCL). Drug release kinetics from oleic acid-loaded lenses was evaluated in phosphate buffer saline (PBS) at different ionic strengths (I = 167, 500, 1665 mM); the release duration of KTF and THCL was decreased with increasing ionic strength of the release medium. Furthermore, the release of KTF and THCL in deionized water did not show a burst and was significantly slower compared to that in PBS. The release kinetics of KTF and THCL was significantly faster when the pH of the release medium was decreased from 7.4 towards 5.5 because of the decrease in the relative amounts of oleate anions in the lens mostly populated at the polymer–pore interfaces. The use of boundary charges at the polymer–pore interfaces of a contact lens to enhance drug partition and extend its release is further confirmed by loading cationic phytosphingosine in contact lenses to attract an anionic drug.


2014 ◽  
pp. 2005 ◽  
Author(s):  
Sureewan Duangjit ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Yasuko Obata ◽  
Kozo Takayama ◽  
...  

2021 ◽  
pp. 117119
Author(s):  
Mansoor Ul Hassan Shah ◽  
Ambavaram Vijaya Bhaskar Reddy ◽  
Suzana Yusup ◽  
Masahiro Goto ◽  
Muhammad Moniruzzaman

Sign in / Sign up

Export Citation Format

Share Document