scholarly journals Examining effects of climate change and land use dynamic on biophysical and economic values of ecosystem services of a natural reserve region

2020 ◽  
Vol 257 ◽  
pp. 120424 ◽  
Author(s):  
Srikanta Sannigrahi ◽  
Qi Zhang ◽  
P.K. Joshi ◽  
Paul C. Sutton ◽  
Saskia Keesstra ◽  
...  
2018 ◽  
Vol 11 (11) ◽  
pp. 4537-4562 ◽  
Author(s):  
HyeJin Kim ◽  
Isabel M. D. Rosa ◽  
Rob Alkemade ◽  
Paul Leadley ◽  
George Hurtt ◽  
...  

Abstract. To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs) – SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6 – to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios.


2021 ◽  
Vol 759 ◽  
pp. 143525
Author(s):  
Fengqi Cui ◽  
Bojie Wang ◽  
Qin Zhang ◽  
Haiping Tang ◽  
Philippe De Maeyer ◽  
...  

2018 ◽  
Author(s):  
HyeJin Kim ◽  
Isabel M. D. Rosa ◽  
Rob Alkemade ◽  
Paul Leadley ◽  
George Hurtt ◽  
...  

Abstract. To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land use and climate change on biodiversity and ecosystem services (i.e. nature’s contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs) to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenarios selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem service models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modelling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modelling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chenchen Shi ◽  
Jinyan Zhan ◽  
Yongwei Yuan ◽  
Feng Wu ◽  
Zhihui Li

Ecosystem services are the benefit human populations derive directly and indirectly from the natural environment. They suffer from both the human intervention, like land use zoning change, and natural intervention, like the climate change. Under the background of climate change, regulation services of ecosystem could be strengthened under proper land use zoning policy to mitigate the climate change. In this paper, a case study was conducted in the middle reaches of the Heihe River Basin to assess the ecosystem services conservation zoning under the change of land use associated with climate variations. The research results show the spatial impact of land use zoning on ecosystem services in the study area which are significant reference for the spatial optimization of land use zoning in preserving the key ecosystem services to mitigate the climate change. The research contributes to the growing literature in finely characterizing the ecosystem services zones altered by land use change to alleviate the impact of climate change, as there is no such systematic ecosystem zoning method before.


2010 ◽  
Vol 161 (8) ◽  
pp. 291-294
Author(s):  
Mario F. Broggi

In order to operationalise the concept of biodiversity for biological variety, it has been applied at three levels: ecosystems, species and genetic diversity. In most cases the debate has been reduced to the aspect of the variety of species, ignoring the fact that the interactions are considerably more complex. In order to do justice to our responsibility for diversity, further efforts are needed, which could be subsumed under the heading “sustainable development”. At the moment, however, our ecological footprint is clearly too big. A strong focus must therefore be placed on such ecosystem services as fertility of the soil, carbon sequestration, maintenance of the hydrological balance, etc. That ultimately leads to economic arguments, which in turn will have massive impacts on current land use policies. Climate change and the increasing cultivation of biofuels are creating new effects, whose impacts on biodiversity were until recently unforeseeable. The underlying message must accordingly be that in the biodiversity debate we must focus on the landscape as such and an appropriate land use policy.


2010 ◽  
Vol 122 (2) ◽  
pp. 161 ◽  
Author(s):  
Ian Mansergh

For the 21st century, scenarios of future climate under global warming suggest that Bassian-Eyrean bioclimatic region of northern Victoria, centred on the North Central Catchment Management Authority (NCCMA), will become markedly warmer and drier. Significant climate change is a real possibility midcentury and some basic bio-physical attributes underpinning the current ecology, land-use and management will be altered. Societal adaptation to climate change will include enhancing landscape resilience and changes to the mix of inter-related ecosystem services. The increasing understanding of these inter-relationships will allow for the creation of a more holistic quantification and production of landscape services. In combination, these challenge the past land-use paradigm on the driest, inhabited continent. Following the mid-19th century gold rushes, land-use in the NCCMA represented the epitome of the colonial land-use paradigm through clearing for agriculture and pastoralism. Victoria has long had the highest percentage private land of any Australian state. The NCCMA catchment is the most denuded of native vegetation, with the smallest percentage of public land and conservation reserves, and is now the centre of a continental concentration of bioregions under high environmental stress. The original primacy of agriculture was fulfilled, sometimes under adverse circumstances, but resultant landscape legacies persist within the relative economic decline of Australian agriculture. The amelioration of these within a future land stewardship that is water-stressed, carbon constrained and prone to extreme weather events is a major challenge. Exploring landscape adaptation, the simple questions arise: From what? To what? This contribution examines broad land-use in the NCCMA in the long term context of climate change and adaptation, land-use and the perceived valuation of ecosystem services from the landscape. The increasing realisation of the interconnectedness of these phenomena and the necessity for ecologically sustainable agriculture provide enhanced drivers for the evolution of new landscape meanings in the context of an inter-generational equity and climate change response.


2020 ◽  
Author(s):  
Dushyant Kumar ◽  
Mirjam Pfeiffer ◽  
Camille Gaillard ◽  
Liam Langan ◽  
Simon Scheiter

Abstract. South Asian vegetation provides essential ecosystem services to the region and its 1.7 billion inhabitants that are closely linked to its land-use forms and carbon storage potential. Yet, biodiversity is threatened by climate and land-use change. Understanding and assessing how ecosystems respond to simultaneous increases in atmospheric CO2 and future climate change is of vital importance to avoid undesired ecosystem change. A failure to react to increasing CO2 and climate change will likely have severe consequences for biodiversity and humankind. Here, we used the aDGVM2 to simulate vegetation dynamics in South Asia under RCP4.5 and RCP8.5, and we explored how the presence or absence of CO2 fertilization influences vegetation responses to climate change. Simulated vegetation under both RCPs without CO2 fertilization effects showed a decrease in tree dominance and biomass, whereas simulations with CO2 fertilization showed an increase in biomass, canopy cover, and tree height and a decrease in biome-specific evapotranspiration by the end of the 21st century. The model predicted changes in above ground biomass and canopy cover that trigger biome transition towards tree-dominated systems. We found that savanna regions are at high risk of woody encroachment and transitioning into forest. We also found transitions of deciduous forest to evergreen forest in the mountain regions. C3 photosynthesis dependent vegetation was not saturated at current CO2 concentrations and the model simulated a strong CO2 fertilization effect with the rising CO2. Hence, vegetation in the region will likely remain a carbon sink. Projections showed that the bioclimatic envelopes of biomes need adjustments to account for shifts caused by climate change and eCO2. The results of our study help to understand the regional climate-vegetation interactions and can support the development of regional strategies to preserve ecosystem services and biodiversity under elevated CO2 and climate change.


Author(s):  
Rubianca Benavidez ◽  
Bethanna Jackson ◽  
Deborah Maxwell ◽  
Enrico Paringit

Abstract. Due to its location within the typhoon belt, the Philippines is vulnerable to tropical cyclones that can cause destructive floods. Climate change is likely to exacerbate these risks through increases in tropical cyclone frequency and intensity. To protect populations and infrastructure, disaster risk management in the Philippines focuses on real-time flood forecasting and structural measures such as dikes and retaining walls. Real-time flood forecasting in the Philippines mostly utilises two models from the Hydrologic Engineering Center (HEC): the Hydrologic Modeling System (HMS) for watershed modelling, and the River Analysis System (RAS) for inundation modelling. This research focuses on using non-structural measures for flood mitigation, such as changing land use management or watershed rehabilitation. This is being done by parameterising and applying the Land Utilisation and Capability Indicator (LUCI) model to the Cagayan de Oro watershed (1400 km2) in southern Philippines. The LUCI model is capable of identifying areas providing ecosystem services such as flood mitigation and agricultural productivity, and analysing trade-offs between services. It can also assess whether management interventions could enhance or degrade ecosystem services at fine spatial scales. The LUCI model was used to identify areas within the watershed that are providing flood mitigating services and areas that would benefit from management interventions. For the preliminary comparison, LUCI and HEC-HMS were run under the same scenario: baseline land use and the extreme rainfall event of Typhoon Bopha. The hydrographs from both models were then input to HEC-RAS to produce inundation maps. The novelty of this research is two-fold: (1) this type of ecosystem service modelling has not been carried out in the Cagayan de Oro watershed; and (2) this is the first application of the LUCI model in the Philippines. Since this research is still ongoing, the results presented in this paper are preliminary. As the land use and soil parameterisation for this watershed are refined and more scenarios are run through the model, more robust comparisons can be made between the hydrographs produced by LUCI and HEC-HMS and how those differences affect the inundation map produced by HEC-RAS.


Sign in / Sign up

Export Citation Format

Share Document