Mechanical and fracture properties of ultra-high performance concrete (UHPC) containing waste glass sand as partial replacement material

2020 ◽  
Vol 277 ◽  
pp. 123501
Author(s):  
Yubo Jiao ◽  
Yao Zhang ◽  
Meng Guo ◽  
Lidong Zhang ◽  
Hao Ning ◽  
...  
Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 404
Author(s):  
Sujing Zhao ◽  
Yiheng Bo

The mechanical performance of ultra-high performance concrete (UHPC) is a function of fiber distribution and orientation, which are affected by the processing of the fresh material. In this study, the influences of two casting positions (mid-cast and end-cast) on strength and fracture properties of UHPCs with different fiber types and fiber contents were investigated. The results show that mid-cast specimens have higher flexural strength and fracture properties than end-cast specimens, while the compressive strength is almost unaffected by casting position. Compared to specimens with straight fibers, the flexural strength of specimens with hooked-end fibers is more likely to be affected by casting position. The residual load-to-peak load ratio is independent of casting position but affected by fiber type and fiber content.


2018 ◽  
Vol 272 ◽  
pp. 290-295
Author(s):  
Tereza Pavlů ◽  
Tomáš Vlach ◽  
Jakub Řepka

This contribution is to verify the utilization of waste glass as partial replacement of fine aggregate for high performance concrete (HPC). Test results of fresh and hardened HPC will be presented. This study has been conducted through basic experimental research in order to analyze the possibilities of recycling waste glasses (grinding glass, milled glass powder from municipal waste) as partial replacement of silica powder for HPC.


Sign in / Sign up

Export Citation Format

Share Document