Demonstration and multi-perspective analysis of industrial-scale co-pyrolysis of biomass, waste agricultural film, and bituminous coal

2021 ◽  
pp. 125819
Author(s):  
Zonglu Yao ◽  
Kang Kang ◽  
Hongbin Cong ◽  
Jixiu Jia ◽  
Lili Huo ◽  
...  
2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Halina Pawlak-Kruczek ◽  
Robert Lewtak ◽  
Zbigniew Plutecki ◽  
Marcin Baranowski ◽  
Michal Ostrycharczyk ◽  
...  

The paper presents the experimental and numerical study on the behavior and performance of an industrial scale boiler during combustion of pulverized bituminous coal with various shares of predried lignite. The experimental measurements were carried out on a boiler WP120 located in CHP, Opole, Poland. Tests on the boiler were performed during low load operation and the lignite share reached over to 36% by mass. The predried lignite, kept in dedicated separate bunkers, was mixed with bituminous coal just before the coal mills. Computational fluid dynamic (CFD) simulation of a cofiring scenario of lignite with hard coal was also performed. Site measurements have proven that cofiring of a predried lignite is not detrimental to the boiler in terms of its overall efficiency, when compared with a corresponding reference case, with 100% of hard coal. Experiments demonstrated an improvement in the grindability that can be achieved during co-milling of lignite and hard coal in the same mill, for both wet and dry lignite. Moreover, performed tests delivered empirical evidence of the potential of lignite to decrease NOx emissions during cofiring, for both wet and dry lignite. Results of efficiency calculations and temperature measurements in the combustion chamber confirmed the need to predry lignite before cofiring. Performed measurements of temperature distribution in the combustion chamber confirmed trend that could be seen in the results of CFD. CFD simulations were performed for predried lignite and demonstrated flow patterns in the combustion chamber of the boiler, which could prove useful in case of any further improvements in the firing system. CFD simulations reached satisfactory agreement with the site measurements in terms of the prediction of emissions.


2021 ◽  
Author(s):  
Md. Emdadul Hoque ◽  
Fazlur Rashid

Reduction of conventional fuel has encouraged to find new sources of renewable energy. Oil produced from the pyrolysis method using biomass is considered as an emerging source of renewable energy. Pyrolytic oil produced in pyrolysis needs to be upgraded to produce bio-oil that can be used with conventional fuel. However, pyrolytic oil contains high amounts of oxygen that lower the calorific value of fuel, creates corrosion, and makes the operation unstable. On the other hand, the up-gradation process of pyrolytic oil involves solvent and catalyst material that requires a high cost. In this regard, the co-pyrolysis method can be used to upgrade the pyrolytic oil where two or more feedstock materials are involved. The calorific value and oil yield in the co-pyrolysis method are higher than pyrolytic oil. Also, the upgraded oil in the co-pyrolysis method contains low water that can improve the fuel property. Therefore, the co-pyrolysis of biomass waste is an emerging source of energy. Among different biomasses, solid waste and aquatic plants are significantly used as feedstock in the co-pyrolysis method. As a consequence, pressure on conventional fuel can be reduced to fulfill the demand for global energy. Moreover, the associated operating and production cost of the co-pyrolysis method is comparatively low. This method also reduces environmental pollution.


2020 ◽  
Vol 8 (2) ◽  
pp. 17-24
Author(s):  
Ahmad Al Ghozali Hasan ◽  
Amrul Amrul ◽  
M Irsyad

Torefaction is one method of utilizing biomass waste into fuel through a thermal process that takesplace at atmospheric pressure with a temperature range of 200-350 ℃ to a solid quality fuelequivalent to sub-bituminous coal. Densification aims to increase biomass mass density. Thecombination of densification and torrefaction is an attractive process option to get high qualitybriquette and pellet fuel. Making briquettes with the hot printing method is able to eliminate theadhesive material so that the process of making briquettes is faster, direct briquettes can be usedwithout a drying process and are able to maintain the calorific value of raw materials. The purposeof this study is to examine the effect of suppression and heating on the briquetting process oftorefaction results on the quality of briquettes based on the physical properties of the drop test,water resistance, combustion temperature and length of combustion. The best quality briquettesfound were 8 tons of briquettes with a temperature of 150 ℃, where the briquette drop test did notlose much material. In water resistance testing, the water absorbed in 8 ton briquettes withtemperature of 150 ℃ is quite low, and when testing the combustion of briquettes is also quite good.Keywords : Torefaction, densification, briquettes, drop test, water resistant, combustion


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhiyue Zhao ◽  
Zhiwei Jiang ◽  
Hong Xu ◽  
Kai Yan

We report a sustainable strategy to cleanly address biomass waste with high-value utilization. Phenol-rich bio-oil is selectively produced by direct pyrolysis of biomass waste corn straw (CS) without use of any catalyst in a microwave device. The effects of temperature and power on the yield and composition of pyrolysis products are investigated in detail. Under microwave irradiation, a very fast pyrolysis rate and bio-oil yield as high as 46.7 wt.% were obtained, which were competitive with most of the previous results. GC-MS analysis showed that temperature and power (heating rate) had great influences on the yield of bio-oil and the selectivity of phenolic compounds. The optimal selectivity of phenols in bio-oil was 49.4 area% by adjusting the operating parameters. Besides, we have made detailed statistics on the change trend of some components and different phenols in bio-oil and given the law and reason of their change with temperature and power. The in situ formed highly active biochar from CS with high content of potassium (1.34 wt.%) is responsible for the improvement of phenol-rich oils. This study offers a sustainable way to fully utilize biomass waste and promote the achievement of carbon neutrality.


2021 ◽  
Vol 321 ◽  
pp. 01005
Author(s):  
Swapan Suman ◽  
Santosh Kumar Rai ◽  
Anand Mohan Yadav ◽  
Awani Bhushan ◽  
Nomendra Tomar ◽  
...  

Aim of this study to investigate the thermal and morphological behaviour of different types of biomass feedstock. For investigation of thermal behaviour we used thermo-gravimetric (TG) analysis and derivative thermo-gravimetric (DTG) analysis. The biomass feedstocks were conceded out under vigorous conditions using nitrogen gas at specific heating rates to gradient the temperature from 25°C to 1000°C. The derivative thermo-gravimetric (DTG) results show that thermal decomposition on these feedstocks. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of biomass wastes. This study used Field Emission Scanning Electron Microscopy (FE-SEM) to observe surface morphology properties of the different biomass wastes. The FE-SEM images showed that clearly retained the fibrous structures in the biomass wastes and were rich in macro-pores.


2014 ◽  
Vol 953-954 ◽  
pp. 251-254
Author(s):  
Teng Fei Chang ◽  
Chu Yang Tang ◽  
Ge Wang ◽  
Mei Yu Gu ◽  
Ying Dong Jia

An experimental study on co-pyrolysis of biomass and coal was performed in a tubular furnace for comparison of product (tar, water, gas and char) yields and composition. The coal sample selected was Huai Nan bituminous coal (HN), while the biomass used was cotton stalk (CS), and the blending ratio of biomass in mixtures was 0/100, 5/100, 10/100, 20/100, 30/100, and 50/100. The blends of coal and biomass were heated 600°C at 5°C/min, and then kept for 15 min during the pyrolysis. The results indicated that there exist synergetic effects in the co-pyrolysis of biomass and coal. The tar yield was 9.33% higher than the theoretical value at the CS blending ratio of 5/100. The maximum light oil content in tar was 9.67% higher than the theoretical value at the CS blending ratio of 10/100.


Energy ◽  
2020 ◽  
Vol 204 ◽  
pp. 117933 ◽  
Author(s):  
Hammad Siddiqi ◽  
Usha Kumari ◽  
Subrata Biswas ◽  
Asmita Mishra ◽  
B.C. Meikap

Sign in / Sign up

Export Citation Format

Share Document