Charge-reversal biodegradable MSNs for tumor synergetic chemo/photothermal and visualized therapy

2021 ◽  
Vol 338 ◽  
pp. 719-730
Author(s):  
Zimu Li ◽  
Yao Yang ◽  
Huaxuan Wei ◽  
Xiaoting Shan ◽  
Xuanzhi Wang ◽  
...  
Keyword(s):  
2019 ◽  
Author(s):  
HanByul Chang ◽  
Paul Ohno ◽  
Yangdongling Liu ◽  
Franz Geiger

We report the detection of charge reversal induced by the adsorption of a cationic polyelectrolyte, poly(allylamine) hydrochloride (PAH), to buried supported lipid bilayers (SLBs), used as idealized model biological membranes. We observe changes in the surface potential in isolation from other contributors to the total SHG response by extracting the phase-shifted potential-dependent third-order susceptibility from the overall SHG signal. We demonstrate the utility of this technique in detecting both the sign of the surface potential and the point of charge reversal at buried interfaces without any prior information or complementary techniques<i>.</i>Furthermore, isolation of the second-order susceptibility contribution from the overall SHG response allows us to directly monitor changes in the Stern Layer. Finally, we characterize the Stern and Diffuse Layers over single-component SLBs formed from three different zwitterionic lipids of different gel-to-fluid phase transition temperatures (T<sub>m</sub>s). We determine whether the surface potential changes with the physical phase state (gel, transitioning, or fluid) of the SLB and incorporate 20 percent of negatively charged lipids to the zwitterionic SLB to investigate how the surface potential changes with surface charge.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2656-2663
Author(s):  
Boye Zhang ◽  
Qianqian Duan ◽  
Yi Li ◽  
Jianming Wang ◽  
Wendong Zhang ◽  
...  

The system is pH-responsive and redox-controlled release. And the charge reversal and size transitions of the system can enhance the targeted ability. Moreover, the system can recognize the cancer cells by the fluorescence imaging.


Giant ◽  
2021 ◽  
Vol 6 ◽  
pp. 100052 ◽  
Author(s):  
Jinpeng Yang ◽  
Zihe Yin ◽  
Yincheng Chang ◽  
Hua Wang ◽  
Jiang-Fei Xu ◽  
...  

Author(s):  
Alberto Martín-Molina ◽  
José Alberto Maroto-Centeno ◽  
Roque Hidalgo-Álvarez ◽  
Manuel Quesada-Pérez
Keyword(s):  

2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Daniel Crosby ◽  
Melissa R. Mikolaj ◽  
Sarah B. Nyenhuis ◽  
Samantha Bryce ◽  
Jenny E. Hinshaw ◽  
...  

ER network formation depends on membrane fusion by the atlastin (ATL) GTPase. In humans, three paralogs are differentially expressed with divergent N- and C-terminal extensions, but their respective roles remain unknown. This is partly because, unlike Drosophila ATL, the fusion activity of human ATLs has not been reconstituted. Here, we report successful reconstitution of fusion activity by the human ATLs. Unexpectedly, the major splice isoforms of ATL1 and ATL2 are each autoinhibited, albeit to differing degrees. For the more strongly inhibited ATL2, autoinhibition mapped to a C-terminal α-helix is predicted to be continuous with an amphipathic helix required for fusion. Charge reversal of residues in the inhibitory domain strongly activated its fusion activity, and overexpression of this disinhibited version caused ER collapse. Neurons express an ATL2 splice isoform whose sequence differs in the inhibitory domain, and this form showed full fusion activity. These findings reveal autoinhibition and alternate splicing as regulators of atlastin-mediated ER fusion.


Sign in / Sign up

Export Citation Format

Share Document