Activated carbon nanofibers incorporated metal oxides for CO2 adsorption: Effects of different type of metal oxides

2021 ◽  
Vol 45 ◽  
pp. 101434
Author(s):  
Faten Ermala Che Othman ◽  
Norhaniza Yusof ◽  
Sadaki Samitsu ◽  
Norfadhilatuladha Abdullah ◽  
Muhammad Faris Hamid ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2117
Author(s):  
Faten Ermala Che Othman ◽  
Norhaniza Yusof ◽  
Javier González-Benito ◽  
Xiaolei Fan ◽  
Ahmad Fauzi Ismail

In this work, we report the preparation of polyacrylonitrile (PAN)-based activated carbon nanofibers composited with different concentrations of reduced graphene oxide (rGO/ACNF) (1%, 5%, and 10% relative to PAN weight) by a simple electrospinning method. The electrospun nanofibers (NFs) were carbonized and physically activated to obtain activated carbon nanofibers (ACNFs). Texture, surface and elemental properties of the pristine ACNFs and composites were characterized using various techniques. In comparison to pristine ACNF, the incorporation of rGO led to changes in surface and textural characteristics such as specific surface area (SBET), total pore volume (Vtotal), and micropore volume (Vmicro) of 373 m2/g, 0.22 cm3/g, and 0.15 cm3/g, respectively, which is much higher than the pristine ACNFs (e.g., SBET = 139 m2/g). The structural and morphological properties of the pristine ACNFs and their composites were studied by Raman spectroscopy and X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) respectively. Carbon dioxide (CO2) adsorption on the pristine ACNFs and rGO/ACNF composites was evaluated at different pressures (5, 10, and 15 bars) based on static volumetric adsorption. At 15 bar, the composite with 10% of rGO (rGO/ACNF0.1) that had the highest SBET, Vtotal, and Vmicro, as confirmed with BET model, exhibited the highest CO2 uptake of 58 mmol/g. These results point out that both surface and texture have a strong influence on the performance of CO2 adsorption. Interestingly, at p < 10 bar, the adsorption process of CO2 was found to be quite well fitted by pseudo-second order model (i.e., the chemisorption), whilst at 15 bar, physisorption prevailed, which was explained by the pseudo-first order model.


2018 ◽  
Vol 1 (1-2) ◽  
pp. 89-94 ◽  
Author(s):  
Norfadhilatuladha Abdullah ◽  
Norhaniza Yusof ◽  
Ahmad Fauzi Ismail ◽  
Faten Ermala Che Othman ◽  
Juhana Jaafar ◽  
...  

2019 ◽  
Vol 12 (3) ◽  
pp. 1100-1107 ◽  
Author(s):  
Yun Qiao ◽  
Shaomao Xu ◽  
Yang Liu ◽  
Jiaqi Dai ◽  
Hua Xie ◽  
...  

Ultrafine Ru nanoparticles anchored on freestanding activated carbon nanofibers with porous structure are synthesized as a high performing cathode for Li–CO2 batteries via a transient, in situ thermal shock method.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3081 ◽  
Author(s):  
Nurul Aida Nordin ◽  
Norizah Abdul Rahman ◽  
Abdul Halim Abdullah

Heavy metal pollution, such as lead, can cause contamination of water resources and harm human life. Many techniques have been explored and utilized to overcome this problem, with adsorption technology being the most common strategies for water treatment. In this study, carbon nanofibers, polyacrylonitrile (PAN)/sago lignin (SL) carbon nanofibers (PAN/SL CNF) and PAN/SL activated carbon nanofibers (PAN/SL ACNF), with a diameter approximately 300 nm, were produced by electrospinning blends of polyacrylonitrile and sago lignin followed by thermal and acid treatments and used as adsorbents for the removal of Pb(II) ions from aqueous solutions. The incorporation of biodegradable and renewable SL in PAN/SL blends fibers produces the CNF with a smaller diameter than PAN only but preserves the structure of CNF. The adsorption of Pb(II) ions on PAN/SL ACNF was three times higher than that of PAN/SL CNF. The enhanced removal was due to the nitric acid treatment that resulted in the formation of surface oxygenated functional groups that promoted the Pb(II) ions adsorption. The best-suited adsorption conditions that gave the highest percentage removal of 67%, with an adsorption capacity of 524 mg/g, were 40 mg of adsorbent dosage, 125 ppm of Pb(II) solution, pH 5, and a contact time of 240 min. The adsorption data fitted the Langmuir isotherm and the pseudo-second-order kinetic models, indicating that the adsorption is a monolayer, and is governed by the availability of the adsorption sites. With the adsorption capacity of 588 mg/g, determined via the Langmuir isotherm model, the study demonstrated the potential of PAN/SL ACNFs as the adsorbent for the removal of Pb(II) ions from aqueous solution.


RSC Advances ◽  
2020 ◽  
Vol 10 (14) ◽  
pp. 8172-8180 ◽  
Author(s):  
Weixiang Qian ◽  
Xian Li ◽  
Xianqing Zhu ◽  
Zhenzhong Hu ◽  
Xu Zhang ◽  
...  

Activated carbon nanofibers for supercapacitor electrodes were prepared by the electrospinning method using degradative solvent extracts from low-rank coal and PAN.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2064
Author(s):  
Faten Ermala Che Othman ◽  
Norhaniza Yusof ◽  
Noorfidza Yub Harun ◽  
Muhammad Roil Bilad ◽  
Juhana Jaafar ◽  
...  

Various types of activated carbon nanofibers’ (ACNFs) composites have been extensively studied and reported recently due to their extraordinary properties and applications. This study reports the fabrication and assessments of ACNFs incorporated with graphene-based materials, known as gACNFs, via simple electrospinning and subsequent physical activation process. TGA analysis proved graphene-derived rice husk ashes (GRHA)/ACNFs possess twice the carbon yield and thermally stable properties compared to other samples. Raman spectra, XRD, and FTIR analyses explained the chemical structures in all resultant gACNFs samples. The SEM and EDX results revealed the average fiber diameters of the gACNFs, ranging from 250 to 400 nm, and the successful incorporation of both GRHA and reduced graphene oxide (rGO) into the ACNFs’ structures. The results revealed that ACNFs incorporated with GRHA possesses the highest specific surface area (SSA), of 384 m2/g, with high micropore volume, of 0.1580 cm3/g, which is up to 88% of the total pore volume. The GRHA/ACNF was found to be a better adsorbent for CH4 compared to pristine ACNFs and reduced graphene oxide (rGO/ACNF) as it showed sorption up to 66.40 mmol/g at 25 °C and 12 bar. The sorption capacity of the GRHA/ACNF was impressively higher than earlier reported studies on ACNFs and ACNF composites. Interestingly, the CH4 adsorption of all ACNF samples obeyed the pseudo-second-order kinetic model at low pressure (4 bar), indicating the chemisorption behaviors. However, it obeyed the pseudo-first order at higher pressures (8 and 12 bar), indicating the physisorption behaviors. These results correspond to the textural properties that describe that the high adsorption capacity of CH4 at high pressure is mainly dependent upon the specific surface area (SSA), pore size distribution, and the suitable range of pore size.


Sign in / Sign up

Export Citation Format

Share Document