Enhancement of epitaxial LaNiO3 electrode on the ferroelectric property of La-doped BiFeO3/SrTiO3 artificial superlattice structure by rf sputtering

2013 ◽  
Vol 368 ◽  
pp. 1-5 ◽  
Author(s):  
Shang-Jui Chiu ◽  
Yen-Ting Liu ◽  
Ge-Ping Yu ◽  
Hsin-Yi Lee ◽  
Jia-Hong Huang
2011 ◽  
Vol 334 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Shang-Jui Chiu ◽  
Yen-Ting Liu ◽  
Hsin-Yi Lee ◽  
Ge-Ping Yu ◽  
Jia-Hong Huang

2006 ◽  
Vol 494 (1-2) ◽  
pp. 325-329 ◽  
Author(s):  
Hsin-Yi Lee ◽  
Heng-Jui Liu ◽  
C.-H. Hsu ◽  
Yuan-Chang Liang

1998 ◽  
Vol 4 (S2) ◽  
pp. 576-577
Author(s):  
W. Tian ◽  
J. C. Jiang ◽  
X. Q. Pan ◽  
C.D. Theis ◽  
D.G. Schlom

Ferroelectric superlattices have been actively and intensively studied in recent years for their great scientific and technological interest. Superlattice containing Pb-based ferroelectric layers are important among ferroelectric superlattice systems, however, it is difficult to grow such superlattice due to the high volatility of Pb. Recently, great progress has been made in fabricating superlattice structure of PbZrO3/PbTiO3 by multi-ion-beam sputtering’ and molecular beam epitaxy (MBE). In this paper, we report the microstructural investigations of PbTiO3/SrTiO3 superlattice films, which were epitaxially grown on the SrTi03 substrate by MBE, using transmission electron microscopy (TEM).[(PbTiO3)l0/(SrTiO3)l0]15 superlattice films were stacked on (100) SrTiO3 substrate alternately by MBE. Before growing the superlattice structure, a baffle layer including the 1000Å La-doped SrTi03 and the subsequent 500 Å PbTiO3 thin films was grown on the substrate. Above the PbTi03/SrTi03 superlattices, another PbTi03 thin film (1000 Å) was grown. Cross-section TEM specimens were prepared by standard methods.


2003 ◽  
Vol 784 ◽  
Author(s):  
Akira Shibuya ◽  
Minoru Noda ◽  
Masanori Okuyama

ABSTRACTNatural-superlattice-structured Bi3TiNbO9–Bi4Ti3O12 (m =2–3) (BTN–BIT) films have been grown on Pt/TiO2/SiO2/Si substrates at 400 °C to 550 °C by pulsed laser deposition (PLD) using BTN–BIT (1 mol:1 mol) target, and were post-annealed in O2 for 45 minutes at 750 °C. BTN–BIT films prepared above 500 °C have single phase whose c lattice parameter is estimated to 8.300 nm in consideration of periodicity of lattice structures. This lattice constant is very close to the value (8.316 nm) of that of two unit cells of BTN and one unit cell of BIT, that is 2–1 superlattice structure of BTN–BIT. The BTN–BIT film with 2–1 superlattice structure has large remanent polarization (2Pr = 50 μC/cm2) and large coercive field (2Ec= 350 kV/cm). La-doped BTN–BIT thin film has also large remanent polarization (2Pr = 52 μC/cm2) and relatively small coercive field (2Ec= 220 kV/cm). The La-doped BTN–BIT film is fatigue-free on Pt electrodes up to 1010 switching cycles.


1977 ◽  
Vol 31 (3) ◽  
pp. 156-158 ◽  
Author(s):  
A. H. Eltoukhy ◽  
J. L. Zilko ◽  
C. E. Wickersham ◽  
J. E. Greene

Author(s):  
S. M. L. Sastry

Ti3Al is an ordered intermetallic compound having the DO19-type superlattice structure. The compound exhibits very limited ductility in tension below 700°C because of a pronounced planarity of slip and the absence of a sufficient number of independent slip systems. Significant differences in slip behavior in the compound as a result of differences in strain rate and mode of deformation are reported here.Figure 1 is a comparison of dislocation substructures in polycrystalline Ti3Al specimens deformed in tension, creep, and fatigue. Slip activity on both the basal and prism planes is observed for each mode of deformation. The dominant slip vector in unidirectional deformation is the a-type (b) = <1120>) (Fig. la). The dislocations are straight, occur for the most part in a screw orientation, and are arranged in planar bands. In contrast, the dislocation distribution in specimens crept at 700°C (Fig. lb) is characterized by a much reduced planarity of slip, a tangled dislocation arrangement instead of planar bands, and an increased incidence of nonbasal slip vectors.


Author(s):  
Y. H. Liu

Ordered Ni3Fe crystals possess a LI2 type superlattice similar to the Cu3Au structure. The difference in slip behavior of the superlattice as compared with that of a disordered phase has been well established. Cottrell first postulated that the increase in resistance for slip in the superlattice structure is attributed to the presence of antiphase domain boundaries. Following Cottrell's domain hardening mechanism, numerous workers have proposed other refined models also involving the presence of domain boundaries. Using the anomalous X-ray diffraction technique, Davies and Stoloff have shown that the hardness of the Ni3Fe superlattice varies with the domain size. So far, no direct observation of antiphase domain boundaries in Ni3Fe has been reported. Because the atomic scattering factors of the elements in NijFe are so close, the superlattice reflections are not easily detected. Furthermore, the domain configurations in NioFe are thought to be independent of the crystallographic orientations.


Author(s):  
K. Ogura ◽  
A. Ono ◽  
S. Franchi ◽  
P.G. Merli ◽  
A. Migliori

In the last few years the development of Scanning Electron Microscopes (SEM), equipped with a Field Emission Gun (FEG) and using in-lens specimen position, has allowed a significant improvement of the instrumental resolution . This is a result of the fine and bright probe provided by the FEG and by the reduced aberration coefficients of the strongly excited objective lens. The smaller specimen size required by in-lens instruments (about 1 cm, in comparison to 15 or 20 cm of a conventional SEM) doesn’t represent a serious limitation in the evaluation of semiconductor process techniques, where the demand of high resolution is continuosly increasing. In this field one of the more interesting applications, already described (1), is the observation of superlattice structures.In this note we report a comparison between secondary electron (SE) and backscattered electron (BSE) images of a GaAs / AlAs superlattice structure, whose cross section is reported in fig. 1. The structure consist of a 3 nm GaAs layer and 10 pairs of 7 nm GaAs / 15 nm AlAs layers grown on GaAs substrate. Fig. 2, 3 and 4 are SE images of this structure made with a JEOL JSM 890 SEM operating at an accelerating voltage of 3, 15 and 25 kV respectively. Fig. 5 is a 25 kV BSE image of the same specimen. It can be noticed that the 3nm layer is always visible and that the 3 kV SE image, in spite of the poorer resolution, shows the same contrast of the BSE image. In the SE mode, an increase of the accelerating voltage produces a contrast inversion. On the contrary, when observed with BSE, the layers of GaAs are always brighter than the AlAs ones , independently of the beam energy.


Sign in / Sign up

Export Citation Format

Share Document