Exploring potential benefits of additive manufacturing in creating corrugated web steel beams

2021 ◽  
Vol 187 ◽  
pp. 106975
Author(s):  
Ghaith A. Abureden ◽  
Walid M. Hasan ◽  
Ayman N. Ababneh
2016 ◽  
Vol 7 (1) ◽  
pp. 69-78
Author(s):  
Mariusz Marcin Maslak ◽  
Marcin Lukacz

Purpose The purpose of this paper is to present and discuss in detail the design approach to shear buckling resistance evaluation for corrugated web being a part of a steel beam exposed to fire. Design/methodology/approach It is based on the interaction between the local and global elastic instability failure modes as well as on the possible yielding of the whole web cross-section during fire. Findings New formulae, adequate for specification of the suitable shear buckling coefficients, depend not only on the web slenderness but also on the temperature of structural steel. Originality/value The methodology proposed by the authors can be added to the current European standard recommendations given in EN 1993-1-2 as a well-justified design algorithm helpful in reliable evaluation of a safety level for steel beams with slender corrugated webs subject to fire exposure. It seems to be highly desirable because, at present, there are no detailed instructions in this field.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Jiankan Liao ◽  
Daniel R. Cooper

Abstract Additive manufacturing (AM) is widely recognized as a critical pillar of advanced manufacturing and is moving from the design shop to the factory floor. As AM processes become more popular, it is paramount that engineers and policymakers understand and then reduce their environmental impacts. This article structures the current work on the environmental impacts of metal powder bed processes: selective laser melting (SLM), direct metal laser sintering (DMLS), electron beam melting (EBM), and binder jetting (BJ). We review the potential benefits and pitfalls of AM in each phase of a part's lifecycle and in different application domains (e.g., remanufacturing and hybrid manufacturing). We highlight critical uncertainties and future research directions throughout. The environmental impacts of AM are sensitive to the specific production and use-phase context; however, several broad lessons can be extracted from the literature. Unlike in conventional manufacturing, powder bed production impacts are dominated by the generation of the direct energy (electricity) required to operate the AM machines. Combined with a more energy-intensive feedstock (metal powder), this means that powder bed production impacts are higher than in conventional manufacturing unless production volumes are very small (saving tool production impacts), and/or there are significant material savings through part light weighting or improved buy-to-fly ratios.


2018 ◽  
Vol 55 (3) ◽  
pp. 431-433
Author(s):  
Gheorghe Muhlfay ◽  
Zoltan Fabian ◽  
Radu Neagoe ◽  
Karin Ursula Horvath

The developments in the biocompatible materials and additive manufacturing technologies gave birth to new possibilities in reconstructive surgery. In addition to revolutionizing the diagnostic possibilities, the modern medical imaging has led to the development of surgical planning software. Using these state-of-the-art technologies, a new standard of care is rising with the spread of patient specific implants. Our view in studying and using these materials and technologies goes beyond their biocompatibility, focusing on the functional and esthetic impact of these restorations. Our aim is to show their potential benefits and pitfalls presenting a couple of posttraumatic and oncological application possibilities, focusing on the new presurgical planning, choice of materials and manufacturing technologies.


Author(s):  
Jiankan Liao ◽  
Daniel R. Cooper

Abstract Additive manufacturing (AM) is widely recognized as a critical pillar of advanced manufacturing and is moving from the design shop to the factory floor. As AM processes become more popular, it is paramount that engineers and policymakers understand and then reduce their environmental impacts. This article structures the current work on the environmental impacts of metal powder bed processes: selective laser melting (SLM), direct metal laser sintering (DMLS), electron beam melting (EBM), and binder jetting (BJ). We review the potential benefits and pitfalls of AM in each phase of a part’s lifecycle and in different application domains (e.g., remanufacturing, hybrid manufacturing etc.). We highlight critical uncertainties and future research directions throughout. The environmental impacts of AM are sensitive to the specific production and use-phase context; however, several broad lessons can be extracted from the literature. Unlike in conventional manufacturing, powder bed production impacts are dominated by the generation of the direct energy (electricity) required to operate the AM machines. Combined with a more energy-intensive feedstock (metal powder) this means that powder bed production impacts are higher than in conventional manufacturing unless production volumes are very small (saving tool production impacts) and/or there are significant material savings through part light weighting or improved buy-to-fly ratios.


2019 ◽  
Vol 279 ◽  
pp. 02004
Author(s):  
Sergey Kudryavtsev

The paper presents a study of the transverse bending behaviour of corrugated web beam with and without web openings. Examined steel beams consist of two flanges and a thin triangularly corrugated web, connected by automatic welding. In the literature, the influence of web opening over transverse load carrying capacity was dealt with mostly for steel beams with plane, sinusoidal and trapezoidal corrugated webs, so researches of beams with triangularly corrugated webs were found out to be very limited. A parametric study is carried out for various web slenderness and corrugation densities. A general-purpose finite element analysis software ABAQUS was used. The corrugation densities adopted in this study represent practical geometries, which are commonly used for such structures in building practice. Models with and without web openings were analysed and examined in terms of load-deformation characteristics and ultimate web shear resistance. Recommendations are given for the practical design of corrugated web beams weakened by circular openings.


2021 ◽  
Vol 13 (4) ◽  
pp. 1599
Author(s):  
Adrián Martínez Cendrero ◽  
Gabriele Maria Fortunato ◽  
Juan Manuel Munoz-Guijosa ◽  
Carmelo De Maria ◽  
Andrés Díaz Lantada

The present work focuses on studying and demonstrating the potential benefits of non-planar printing, as compared to conventional 3D printing, in terms of improved eco-impacts. To this end, a case study of a medical or ergonomic device, which may benefit from non-planar printing in different ways, is completely developed and manufactured employing alternative approaches, which are quantified, as regards production costs and environmental impacts. Three 3D printing processes are used: two of them relying on non-planar printing, one using conventional 2D printing trajectories. Relevant benefits are achieved thanks to the possibility, enabled by non-planar 3D printing, of manufacturing products upon reusable rapid tools. These support tools constitute an interesting alternative to the support meshes generally employed in additive manufacturing, which are normally a relevant source of waste and involve costly post-processes.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yasir M. Alharthi ◽  
Ibrahim A. Sharaky ◽  
Ahmed S. Elamary

Hybrid beams provide the opportunity to implement characterized steel sections by recruiting materials based on yield strength and the type of applied stress. Previous studies demonstrated that steel beams with a trapezoidal corrugated web (SBCWs) were affected by both fatigue cracks initiated along the inclined fold (IF) and the maximal additional stress located in the middle of the IFs. This paper presents a numerical study of hybrid SBCWs and nonwelded IFs. Numerical simulation is presented using the finite element (FE) method with the aid of the ANSYS software package. Three-dimensional FE models were developed considering the nonlinear properties of materials and geometric imperfection and validated using five hybrid specimens that were fabricated and tested experimentally by the authors. The load-deflection behavior and failure mechanism of the numerical results were in good agreement with the experimental results. The comparison of the FE models and the experimental results shows the good capability of the FE model to be used as a base for the parametric study. The parametric study focused on the effect of web thickness, flange thickness, web height, and flange and web steel grades. Furthermore, parametric studies are conducted to investigate the effects of the number and depth of the stiffeners on the behavior of hybrid SBCWs. We concluded that the flange thickness, web thickness, web height, and steel grades of flanges significantly affect the capacity and failure mode of hybrid SBCWs. We also concluded that the flange stiffeners have a significant effect on the overall behavior, toughness, and load capacity of SBCWs. Finally, a new equation is proposed to anticipate the shear capacity of SBCW nonwelded IFs based on the length of the welded horizontal fold.


2021 ◽  
Author(s):  
Kevin T Slattery ◽  

In the past years, additive manufacturing (AM), also known as “3D printing,” has transitioned from rapid prototyping to making parts with potentially long service lives. Now AM provides the ability to have an almost fully digital chain from part design through manufacture and service. Web searches will reveal many statements that AM can help an organization in its pursuit of a “digital thread.” Equally, it is often stated that a digital thread may bring great benefits in improving designs, processes, materials, operations, and the ability to predict failure in a way that maximizes safety and minimizes cost and downtime. Now that the capability is emerging, a whole series of new questions begin to surface as well: •• What data should be stored, how will it be stored, and how much space will it require? •• What is the cost-to-benefit ratio of having a digital thread? •• Who owns the data and who can access and analyze it? •• How long will the data be stored and who will store it? •• How will the data remain readable and usable over the lifetime of a product? •• How much manipulation of disparate data is necessary for analysis without losing information? •• How will the data be secured, and its provenance validated? •• How does an enterprise accomplish configuration management of, and linkages between, data that may be distributed across multiple organizations? •• How do we determine what is “authoritative” in such an environment? These, along with many other questions, mark the combination of AM with a digital thread as an unsettled issue. As the seventh title in a series of SAE EDGE™ Research Reports on AM, this report discusses what the interplay between AM and a digital thread in the mobility industry would look like. This outlook includes the potential benefits and costs, the hurdles that need to be overcome for the combination to be useful, and how an organization can answer these questions to scope and benefit from the combination. This report, like the others in the series, is directed at a product team that is implementing AM. Unlike most of the other reports, putting the infrastructure in place, addressing the issues, and taking full advantage of the benefits will often fall outside of the purview of the product team and at the higher organizational, customer, and industry levels.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Sheng Yang ◽  
Yaoyao Fiona Zhao

Part count reduction (PCR) is one of the typical motivations for using additive manufacturing (AM) processes. However, the implications and trade-offs of employing AM for PCR are not well understood. The deficits are mainly reflected in two aspects: (1) lifecycle-effect analysis of PCR is rare and scattered; (2) current PCR rules lack full consideration of AM capabilities and constraints. To fill these gaps, this paper first summarizes the main effect of general PCR (G-PCR) on lifecycle activities to make designers aware of potential benefits and risks and discusses in a point-to-point fashion the new opportunities and challenges presented by AM-enabled PCR (AM-PCR). Second, a new set of design rules and principles are proposed to support potential candidate detection for AM-PCR. Third, a dual-level screening and refinement design framework is presented aiming at finding the optimal combination of AM-PCR candidates. In this framework, the first level down-samples combinatory space based on the proposed new rules while the second one exhausts and refines each feasible solution via design optimization. A case study of a motorcycle steering assembly is considered to demonstrate the effectiveness of the proposed design rules and framework. In the end, possible challenges and limitations of the presented design framework are discussed.


Sign in / Sign up

Export Citation Format

Share Document