Investigation of the tensile strain response of the girth weld of high-strength steel pipeline

2022 ◽  
Vol 188 ◽  
pp. 107047
Author(s):  
Yinhui Zhang ◽  
Jian Shuai ◽  
Wei Ren ◽  
Zhiyang Lv
2013 ◽  
Vol 716 ◽  
pp. 266-270
Author(s):  
Xiang Li ◽  
Xiao Yang Li ◽  
Hui Ping Yu ◽  
Ya Li

The welding spot of Ultra-high strength steel of 22MnB5 and common steel of St16 were the investigative objects, the intermediate frequency inverter & electric servo welding system was used to weld the sheets. Electrical measuring test method was used on spot-welded joint under tensile-shear load to determinate the strain of different positions, including the strain of weld nugget, the stain around the nugget and the base metals strain near the weld nugget. The deformation regularity of spot welding joints surrounding and base metal were analysed according to the data. The test provided a reference for the numerical simulation of spot welding model. Test results show that the strain distribution on spot welding joint is not uniform, the strain of the weld nugget center is relatively small, large deformation exists mainly in the heat affected zone. That is to say, the area near the spot-welding joint heat affected zone is prone to yield. The base metal area near the weld nugget is mainly affected by tensile strain, and the strain increases with the increasing of the load. The force condition of the specimen is complicated around the nugget, the relationship between the load and the strain is erratic. The strain of the weld nugget will gradually change from axial compressive strain to axial tensile strain. The strain of spot welding specimen made of dissimilar materials (22MnB5& ST16) is negative, and almost linearly.


Author(s):  
I.R. Antypes ◽  
◽  
V.V. Zaitsev ◽  

Currently, the use of composite materials is increasingly used in various areas of the national economy, including the aviation industry. The materials of this article are devoted to the study of the use of composite materials for the manufacture of aircraft landing gear in comparison with the traditionally used brand of steel. As a result of the work carried out, it was found that the slope made of carbon fiber showed a critical stress twice as high as its design made of 30xgsn2a steel. In addition, carbon plastics are superior to high-strength steel in terms of specific strength, stiffness, and tensile strength.


2018 ◽  
pp. 69-78
Author(s):  
M. L. Fedoseev ◽  
◽  
M. S. Mikhailov ◽  
N. F. Drozdova ◽  
S. N. Petrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document