scholarly journals Effect of processing conditions and material attributes on the design space of lysozyme pellets prepared by extrusion/spheronization

Author(s):  
Yousif H-E.Y. Ibrahim ◽  
Patience Wobuoma ◽  
Katalin Kristó ◽  
Ferenc Lajkó ◽  
Gábor Klivényi ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hung-Yu Wang ◽  
Yu-Lung Lo ◽  
Hong-Chuong Tran ◽  
M. Mohsin Raza ◽  
Trong-Nhan Le

Purpose For high crack-susceptibility materials such as Inconel 713LC (IN713LC) nickel alloy, fabricating crack-free components using the laser powder bed fusion (LPBF) technique represents a significant challenge because of the complex interactions between the effects of the main processing parameters, namely, the laser power and scanning speed. Accordingly, this study aims to build up a methodology which combines simulation model and experimental approach to fabricate high-density (>99.9%) IN713LC components using LPBF process. Design/methodology/approach The present study commences by performing three-dimensional (3D) heat transfer finite element simulations to predict the LPBF outcome (e.g. melt pool depth, temperature and mushy zone extent) for 33 representative sample points chosen within the laser power and scanning speed design space. The simulation results are used to train a surrogate model to predict the LPBF result for any combination of the processing conditions within the design space. Then, experimental trials were performed to choose the proper hatching space and also to define the high crack susceptibility criterion. The process map is then filtered in accordance with five quality criteria, namely, avoiding the keyhole phenomenon, improving the adhesion between the melt pool and the substrate, ensuring single-scan-track stability, avoiding excessive melt pool evaporation and suppressing the formation of micro-cracks, to determine the region of the process map which improves the relative density of the IN713LC component and minimizes the micro-cracks. The optimal processing conditions are used to fabricate IN713LC specimens for tensile testing purposes. Findings The optimal processing conditions predicted by simulation model are used to fabricate IN713LC specimens for tensile testing purposes. Experimental results show that the tensile strength and elongation of 3D-printed IN713LC tensile bar is higher than those of tensile bar made by casting. The yield strength of 791 MPa, ultimate strength of 995 MPa, elongation of 12%, and relative density of 99.94% are achieved. Originality/value The present study proposed a systematic methodology to find the processing conditions that are able to minimize the formation of micro-crack and improve the density of the high crack susceptivity metal material in LPBF process.


Author(s):  
Peter Pegler ◽  
N. David Theodore ◽  
Ming Pan

High-pressure oxidation of silicon (HIPOX) is one of various techniques used for electrical-isolation of semiconductor-devices on silicon substrates. Other techniques have included local-oxidation of silicon (LOCOS), poly-buffered LOCOS, deep-trench isolation and separation of silicon by implanted oxygen (SIMOX). Reliable use of HIPOX for device-isolation requires an understanding of the behavior of the materials and structures being used and their interactions under different processing conditions. The effect of HIPOX-related stresses in the structures is of interest because structuraldefects, if formed, could electrically degrade devices.This investigation was performed to study the origin and behavior of defects in recessed HIPOX (RHIPOX) structures. The structures were exposed to a boron implant. Samples consisted of (i) RHlPOX'ed strip exposed to a boron implant, (ii) recessed strip prior to HIPOX, but exposed to a boron implant, (iii) test-pad prior to HIPOX, (iv) HIPOX'ed region away from R-HIPOX edge. Cross-section TEM specimens were prepared in the <110> substrate-geometry.


1997 ◽  
Vol 473 ◽  
Author(s):  
Michael Lane ◽  
Robert Ware ◽  
Steven Voss ◽  
Qing Ma ◽  
Harry Fujimoto ◽  
...  

ABSTRACTProgressive (or time dependent) debonding of interfaces poses serious problems in interconnect structures involving multilayer thin films stacks. The existence of such subcriticai debonding associated with environmentally assisted crack-growth processes is examined for a TiN/SiO2 interface commonly encountered in interconnect structures. The rate of debond extension is found to be sensitive to the mechanical driving force as well as the interface morphology, chemistry, and yielding of adjacent ductile layers. In order to investigate the effect of interconnect structure, particularly the effect of an adjacent ductile Al-Cu layer, on subcriticai debonding along the TiN/SiO2 interface, a set of samples was prepared with Al-Cu layer thicknesses varying from 0.2–4.0 μm. All other processing conditions remained the same over the entire sample run. Results showed that for a given crack growth velocity, the debond driving force scaled with Al-Cu layer thickness. Normalizing the data by the critical adhesion energy allowed a universal subcriticai debond rate curve to be derived.


Author(s):  
Vivek Ranjan Sinha ◽  
M. K. Agrawal ◽  
A. Agarwal ◽  
Gurpreet Singh ◽  
D. Ghai

2021 ◽  
Author(s):  
Luis Salas Nunez ◽  
Jimmy C. Tai ◽  
Dimitri N. Mavris

2021 ◽  
Author(s):  
Laurens Voet ◽  
Prakash Prashanth ◽  
Raymond Speth ◽  
Jayant Sabnis ◽  
Choon Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document