The impact of design space constraints on the noise and emissions from derivative engines for civil supersonic aircraft

2021 ◽  
Author(s):  
Laurens Voet ◽  
Prakash Prashanth ◽  
Raymond Speth ◽  
Jayant Sabnis ◽  
Choon Tan ◽  
...  
Author(s):  
Nicolas Albarello ◽  
Jean-Baptiste Welcomme

The design of systems architectures often involve a combinatorial design-space made of technological and architectural choices. A complete or large exploration of this design space requires the use of a method to generate and evaluate design alternatives. This paper proposes an innovative approach for the design-space exploration of systems architectures. The SAMOA (System Architecture Model-based OptimizAtion) tool associated to the method is also introduced. The method permits to create a large number of various system architectures combining a set of possible components to address given system functions. The method relies on models that are used to represent the problem and the solutions and to evaluate architecture performances. An algorithm first synthesizes design alternatives (a physical architecture associated to a functional allocation) based on the functional architecture of the system, the system interfaces, a library of available components and user-defined design rules. Chains of components are sequentially added to an initially empty architecture until all functions are fulfilled. The design rules permit to guarantee the viability and validity of the chains of components and, consequently, of the generated architectures. The design space exploration is then performed in a smart way through the use of an evolutionary algorithm, the evolution mechanisms of which are specific to system architecting. Evaluation modules permit to assess the performances of alternatives based on the structure of the architecture model and the data embedded in the component models. These performances are used to select the best generated architectures considering constraints and quality metrics. This selection is based on the Pareto-dominance-based NSGA-II algorithm or, alternatively, on an interactive preference-based algorithm. Iterating over this evolution-evaluation-selection process permits to increase the quality of solutions and, thus, to highlight the regions of interest of the design-space which can be used as a base for further manual investigations. By using this method, the system designers have a larger confidence in the optimality of the adopted architecture than using a classical derivative approach as many more solutions are evaluated. Also, the method permits to quickly evaluate the trade-offs between the different considered criteria. Finally, the method can also be used to evaluate the impact of a technology on the system performances not only by a substituting a technology by another but also by adapting the architecture of the system.


2018 ◽  
Vol 40 (3) ◽  
pp. 319-339 ◽  
Author(s):  
Anna Parkin ◽  
Manuel Herrera ◽  
David A Coley

One aim of zero carbon, or zero energy, buildings is to help slow climate change. However, regulatory definitions frequently miss substantial emissions, for example ones associated with the materials the building is constructed from, thereby compromising this goal. Unfortunately, including such emissions might restrict the design space, reduce architectural freedom or greatly increase costs. This work presents a new framework for examining the problem. The zero carbon/energy design and regulatory space forms a sub-space of the hyper-volume enclosing all possible designs and regulatory frameworks. A new mathematical/software environment was developed which allows the size and shape of this sub-space to be investigated for the first time. Twenty-four million building design/regulatory standard combinations were modelled and assessed using a tree classification approach. It was found that a worldwide zero standard that includes embodied emissions is possible and is easier to achieve if a carbon rather than an energy metric is adopted, with the design space twice the size for a carbon metric. This result is important for the development of more encompassing regulations, and the novel methods developed applicable to other aspects of construction controlled by regulation where there is the desire to examine the impact of new regulations prior to legislation. Practical application: As energy standards become more strict, and given the growth in non-regulatory standards (such as Passivhaus), there is the need to study the potential impact of any element of a standard on the range of designs that can be built or the materials that can be used. This work sets out a general framework and method for doing this. The approach and results will be of interest to policy makers, but also to engineers and architects wondering what the key constraints to design the adoption of various philosophies to low energy/carbon standards might have within their work. For example, the implications of the building standard (or client) requiring embodied emissions to be included or the energy balance period for renewable generation to be monthly, not annual.


2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Martin N. Goodhand ◽  
Robert J. Miller ◽  
Hang W. Lung

An important question for a designer is how, in the design process, to deal with the small geometric variations which result from either the manufacture process or in-service deterioration. For some blade designs geometric variations will have little or no effect on the performance of a row of blades, while in others their effects can be significant. This paper shows that blade designs which are most sensitive are those which are susceptible to a distinct switch in the fluid mechanisms responsible for limiting blade performance. To demonstrate this principle, the sensitivity of compressor 2D incidence range to manufacture variations is considered. Only one switch in mechanisms was observed, the onset of flow separation at the leading edge. This switch is only sensitive to geometric variations around the leading edge, 0–3% of the suction surface. The consequence for these manufacture variations was a 10% reduction in the blade's positive incidence range. For this switch, the boundary in the design space is best defined in terms of the blade pressure distribution. Blade designs where the acceleration exceeds a critical value just downstream of the leading edge are shown to be robust to geometric variation. Two historic designs, supercritical blades and blades with sharp leading edges, though superior in design intent, are shown to sit outside this robust region and thus, in practice, perform worse. The improved understanding of the robust, region of the design space is then used to design a blade capable of a robust, 5% increase in operating incidence range.


Author(s):  
Paul Mayencourt ◽  
John Ochsendorf ◽  
Caitlin Mueller

The large impact of building structures on the environment must be reduced to meet the global targets fixed by the Intergovernmental Panel on Climate Change. Standard building structures with constant prismatic cross-section have material inefficiencies of around 66% (and up to 75% in some cases) that need to be addressed. Structural shaping, a subfield of shape optimization, offers a pathway to reduce the impact of building materials on the environment. Shaping statically determinate structures such as simply supported beams is relatively straightforward, but offers few design options compared to statically indeterminate structures. However, no methods provide an efficient way for designers to shape these systems according to their design intent or efficiency goals. Based on plasticity theory, this paper presents a shaping methodology to explore the design space of shaped indeterminate frame structures. The methodology is implemented in three case studies.<br/> In all the case studies, the methodology allows for the exploration of material-efficient yet diverse designs of shaped indeterminate frame structures. The implementation of this methodology can promote the use of structural shaping by offering more agency to structural designers to create diverse and efficient structural systems.


Author(s):  
Pablo Bellocq ◽  
Inaki Garmendia ◽  
Jordane Legrand ◽  
Vishal Sethi

Direct Drive Open Rotors (DDORs) have the potential to significantly reduce fuel consumption and emissions relative to conventional turbofans. However, this engine architecture presents many design and operational challenges both at engine and aircraft level. At preliminary design stages, a broad design space exploration is required to identify potential optimum design regions and to understand the main trade offs of this novel engine architecture. These assessments may also aid the development process when compromises need to be performed as a consequence of design, operational or regulatory constraints. Design space exploration assessments are done with 0-D or 1-D models for computational purposes. These simplified 0-D and 1-D models have to capture the impact of the independent variation of the main design and control variables of the engine. Historically, it appears that for preliminary design studies of DDORs, Counter Rotating Turbines (CRTs) have been modelled as conventional turbines and therefore it was not possible to assess the impact of the variation of the number of stages (Nb) of the CRT and rotational speed of the propellers. Additionally, no preliminary design methodology for CRTs was found in the public domain. Part I of this two-part publication proposes a 1-D preliminary design methodology for DDOR CRTs which allows an independent definition of both parts of the CRT. A method for calculating the off-design performance of a known CRT design is also described. In Part II, a 0-D design point efficiency calculation for CRTs is proposed and verified with the 1-D methods. The 1-D and 0-D CRT models were used in an engine control and design space exploration case study of a DDOR with a 4.26m diameter an 10% clipped propeller for a 160 PAX aircraft. For this application: • the design and performance of a 20 stage CRT rotating at 860 rpm (both drums) obtained with the 1-D methods is presented. • differently from geared open rotors, negligible cruise fuel savings can be achieved by an advanced propeller control. • for rotational speeds between 750 and 880 rpm (relatively low speeds for reduced noise), 22 and 20 stages CRTs are required. • engine weight can be kept constant for different design rotational speeds by using the minimum required Nb. • for any target engine weight, TOC and cruise SFC are reduced by reducing the rotational speeds and increasing Nb (also favourable for reducing CRP noise). However additional CRT stages increase engine drag, mechanical complexity and cost.


Author(s):  
Anchit Dutta ◽  
Adhip Gupta ◽  
Sharath Sathish ◽  
Aman Bandooni ◽  
Pramod Kumar

Abstract The paper presents modeling and Design of Experiments (DOE) analysis for a simple recuperated s-CO2 closed loop Brayton cycle operating at a maximum temperature of 600°C and a compressor inlet temperature of 45°C. The analysis highlights the impact of isentropic efficiencies of the turbine and compressor, decoupled in this case, on other equipment such as recuperator, gas cooler and heater, all of which have a bearing on the overall performance of the s-CO2 Brayton cycle. A MATLAB program coupled with REFPROP is used to perform the thermodynamic analysis of the cycle. A design space exploration with a Design of Experiments (DOE) study is undertaken using I-sight™ (multi-objective optimization software), which is coupled with the MATLAB code. The outcome of the DOE study provides the optimal pressure ratios and high side pressures for maximum cycle efficiency in the design space. By varying pressure ratios along with a floating high side pressure, the analysis reveals that the cycle performance exhibits a peak around a pressure ratio of 2.5, with cycle efficiency being the objective function. A further interesting outcome of the DOE study reveals that the isentropic efficiencies of the compressor and turbine have a strong influence not only on the overall cycle efficiency, but also the optimum pressure ratio as well as the threshold pressures (low as well as high side pressure). An important outcome of this exercise shows that the isentropic efficiency of the turbine has a much greater impact on the overall cycle performance as compared to that of the compressor.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 562
Author(s):  
Moritz von Stosch ◽  
René Schenkendorf ◽  
Geoffroy Geldhof ◽  
Christos Varsakelis ◽  
Marco Mariti ◽  
...  

The Process Analytical Technology initiative and Quality by Design paradigm have led to changes in the guidelines and views of how to develop drug manufacturing processes. On this occasion the concept of the design space, which describes the impact of process parameters and material attributes on the attributes of the product, was introduced in the ICH Q8 guideline. The way the design space is defined and can be presented for regulatory approval seems to be left to the applicants, among who at least a consensus on how to characterize the design space seems to have evolved. The large majority of design spaces described in publications seem to follow a “static” statistical experimentation and modeling approach. Given that temporal deviations in the process parameters (i.e., moving within the design space) are of a dynamic nature, static approaches might not suffice for the consideration of the implications of variations in the values of the process parameters. In this paper, different forms of design space representations are discussed and the current consensus is challenged, which in turn, establishes the need for a dynamic representation and characterization of the design space. Subsequently, selected approaches for a dynamic representation, characterization and validation which are proposed in the literature are discussed, also showcasing the opportunity to integrate the activities of process characterization, process monitoring and process control strategy development.


2007 ◽  
Vol 111 (1119) ◽  
pp. 311-314 ◽  
Author(s):  
O. Dessens ◽  
H. L. Rogers ◽  
J. A. Pyle

Abstract New model calculations suggest that the potential impact on the atmosphere of a future fleet of supersonic aircraft, for the year 2015, is highly dependent upon the amount of nitrogen oxides (NO x ) emitted from the fleet. This result contrasts with the IPCC assessment which suggested that the impact of supersonic aircraft on the atmosphere was primarily through the role of water vapour emissions both on atmospheric ozone and climate change. These new findings are extremely important for atmospheric scientists, the aviation industry and policy makers, highlighting the importance of further development of low NO x combustors for supersonic aircraft, an aspect which has been largely ignored following the IPCC Special Report.


Author(s):  
Christopher Chahine ◽  
Joerg R. Seume ◽  
Tom Verstraete

Aerodynamic turbomachinery component design is a very complex task. Although modern CFD solvers allow for a detailed investigation of the flow, the interaction of design changes and the three dimensional flow field are highly complex and difficult to understand. Thus, very often a trial and error approach is applied and a design heavily relies on the experience of the designer and empirical correlations. Moreover, the simultaneous satisfaction of aerodynamic and mechanical requirements leads very often to tedious iterations between the different disciplines. Modern optimization algorithms can support the designer in finding high performing designs. However, many optimization methods require performance evaluations of a large number of different geometries. In the context of turbomachinery design, this often involves computationally expensive Computational Fluid Dynamics and Computational Structural Mechanics calculations. Thus, in order to reduce the total computational time, optimization algorithms are often coupled with approximation techniques often referred to as metamodels in the literature. Metamodels approximate the performance of a design at a very low computational cost and thus allow a time efficient automatic optimization. However, from the experiences gained in past optimizations it can be deduced that metamodel predictions are often not reliable and can even result in designs which are violating the imposed constraints. In the present work, the impact of the inaccuracy of a metamodel on the design optimization of a radial compressor impeller is investigated and it is shown if an optimization without the usage of a metamodel delivers better results. A multidisciplinary, multiobjective optimization system based on a Differential Evolution algorithm is applied which was developed at the von Karman Institute for Fluid Dynamics. The results show that the metamodel can be used efficiently to explore the design space at a low computational cost and to guide the search towards a global optimum. However, better performing designs can be found when excluding the metamodel from the optimization. Though, completely avoiding the metamodel results in a very high computational cost. Based on the obtained results in present work, a method is proposed which combines the advantages of both approaches, by first using the metamodel as a rapid exploration tool and then switching to the accurate optimization without metamodel for further exploitation of the design space.


Sign in / Sign up

Export Citation Format

Share Document