3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review

2021 ◽  
pp. 103630
Author(s):  
Wenceslao Piedra-Cascón ◽  
Vinayak R. Krishnamurthy ◽  
Wael Att ◽  
Marta Revilla-León
2021 ◽  
Vol 1027 ◽  
pp. 136-140
Author(s):  
Sze Yi Mak ◽  
Kwong Leong Tam ◽  
Ching Hang Bob Yung ◽  
Wing Fung Edmond Yau

Metal additive manufacturing has found broad applications in diverse disciplines. Post processing to homogenize and improve surface finishing remains a critical challenge to additive manufacturing. We propose a novel one-stop solution of adopting hybrid metal 3D printing to streamlining the additive manufacturing workflow as well as to improve surface roughness quality of selective interior surface of the printed parts. This work has great potential in medical and aerospace industries where complicated and high-precision additive manufacturing is anticipated.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 84
Author(s):  
Marcin Ziółkowski ◽  
Tomasz Dyl

3D printing conquers new branches of production due to becoming a more reliable and professional method of manufacturing. The benefits of additive manufacturing such as part optimization, weight reduction, and ease of prototyping were factors accelerating the popularity of 3D printing. Additive manufacturing has found its niches, inter alia, in automotive, aerospace and dentistry. Although further research in those branches is still required, in some specific applications, additive manufacturing (AM) can be beneficial. It has been proven that additively manufactured parts have the potential to out perform the conventionally manufactured parts due to their mechanical properties; however, they must be designed for specific 3D printing technology, taking into account its limitations. The maritime industry has a long-standing tradition and is based on old, reliable techniques; therefore it implements new solutions very carefully. Besides, shipbuilding has to face very high classification requirements that force the use of technologies that guarantee repeatability and high quality. This paper provides information about current R&D works in the field of implementing AM in shipbuilding, possible benefits, opportunities and threats of implementation.


ChemCatChem ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 1512-1525 ◽  
Author(s):  
Sergio Rossi ◽  
Alessandra Puglisi ◽  
Maurizio Benaglia

2021 ◽  
pp. 349-358
Author(s):  
Mirko Daneluzzo ◽  
Michele Daneluzzo

AbstractThe paper presents an ongoing project focusing on the application of additive manufacturing technologies for the design of staircases. Additive digital fabrication allows architects to reinvestigate materials, processes, and creates new design opportunities to explore novel aesthetical and functional expression in architecture, enabling a reinterpretation of the typology of the staircase, using thermoplastic materials. This paper reviews the opportunities and challenges of using 3D printing for fabricating custom stairs with complex geometries in two studied configurations.


2018 ◽  
Vol 919 ◽  
pp. 222-229
Author(s):  
Jiří Šafka ◽  
Filip Veselka ◽  
Martin Lachman ◽  
Michal Ackermann

The article deals with the topic of 3D printing of pressure vessels and their testing. The main focus of the research was on a 3D model of the pressure vessel, which was originally designed for a student formula racing car project. The described virtual 3D model was designed with regard to 3D printing. The physical model was manufactured using several additive manufacturing technologies. The first technology was FDM using ULTEM 1010 material. The next technology was SLS (Selective Laser Sintering) using polyamide materials (PA3200GF and PA2220). The last technology was SLA (Stereolithography) using a polypropylene material (Durable). Experimental evaluation of the vessels was carried out by a pressure test, which verified the compactness of the 3D printed parts and their possible porosity. At the end of the article, a comparison of each printed model is made in terms of their final price and weight, together with pressure and thermal resistance.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3961 ◽  
Author(s):  
Hong Xiao ◽  
Wei Han ◽  
Yueke Ming ◽  
Zhongqiu Ding ◽  
Yugang Duan

Three-dimensional printing of continuous carbon fiber/epoxy composites (CCF/EPCs) is an emerging additive manufacturing technology for fiber-reinforced polymer composites and has wide application prospects. However, the 3D printing parameters and their relationship with the mechanical properties of the final printed samples have not been fully investigated in a computational and quantifiable way. This paper presents a sensitivity analysis (SA)-based parameter optimization framework for the 3D printing of CCF/EPCs. A surrogate model for a process parameter–mechanical property relationship was established by support vector regression (SVR) analysis of the experimental data on flexural strength and flexural modulus under different process parameters. An SA was then performed on the SVR surrogate model to calculate the importance of each individual 3D printing parameter on the mechanical properties of the printed samples. Based on the SA results, the optimal 3D printing parameters and the corresponding flexural strength and flexural modulus of the printed samples were predicted and verified by experiments. The results showed that the proposed framework can serve as a high-accuracy tool to optimize the 3D printing parameters for the additive manufacturing of CCF/EPCs.


2018 ◽  
Vol 29 (2) ◽  
pp. 350-371 ◽  
Author(s):  
Federica Murmura ◽  
Laura Bravi

Purpose In the world economy there is the emergence of advanced manufacturing technologies that are enabling more cost and resource-efficient small-scale production. Among them, additive manufacturing, commonly known as 3D printing, is leading companies to rethink where and how they conduct their manufacturing activities. The purpose of this paper is to focus in the Italian wood-furniture industry to understand if the companies in this sector are investing in additive manufacturing techniques, to remain competitive in their reference markets. The research also attempts to investigate the potential sustainable benefits and limitations to the implementation of 3D printing in this specific sector, considering the companies that have already implemented this technology. Design/methodology/approach Data were collected using a structured questionnaire survey performed on a sample of 234 Italian companies in this sector; 76 companies claimed to use 3D printing in their production system. The questionnaire was distributed via computer-assisted web interviewing and it consisted of four sections. Findings The research has highlighted how Italian 3D companies have a specific profile; they are companies aimed at innovating through the search for new products and product features, putting design and Made in Italy in the first place. They pay high attention to the image they communicate to the market and are highly oriented to the final customer, and to the satisfaction of its needs. Originality/value The study is attempting to expand a recent and unexplored research line on the possible advantages and disadvantages of the implementation of emerging production technologies such as 3D printing.


Sign in / Sign up

Export Citation Format

Share Document