scholarly journals Non-transferrin-bound iron is associated with biomarkers of oxidative stress, inflammation and endothelial dysfunction in type 2 diabetes

2015 ◽  
Vol 29 (7) ◽  
pp. 943-949 ◽  
Author(s):  
Husam Aljwaid ◽  
Desley L. White ◽  
Keith J. Collard ◽  
A. John Moody ◽  
Jonathan H. Pinkney
PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e108587 ◽  
Author(s):  
Pawel P. Wolkow ◽  
Wladyslaw Kosiniak-Kamysz ◽  
Grzegorz Osmenda ◽  
Grzegorz Wilk ◽  
Beata Bujak-Gizycka ◽  
...  

2021 ◽  
Author(s):  
Kabelo Mokgalaboni ◽  
Yonela Ntamo ◽  
Khanyisani Ziqubu ◽  
Tawanda M Nyambuya ◽  
Bongani Nkambule ◽  
...  

Oxidative stress and inflammation remain the major complications implicated in the development and progression of metabolic complications, including obesity, type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). In...


2015 ◽  
Vol 18 ◽  
pp. 598-607 ◽  
Author(s):  
Antonio Hernández-Mijares ◽  
Celia Bañuls ◽  
Susana Rovira-Llopis ◽  
Ángeles Álvarez ◽  
Samuel Orden ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Monica Pittaluga ◽  
Antonio Sgadari ◽  
Ivan Dimauro ◽  
Barbara Tavazzi ◽  
Paolo Parisi ◽  
...  

Objective.Hyperglycemia leads to increased production of reactive oxygen species (ROS) in type 2 diabetes, which reduces cellular antioxidant defenses and induces DNA lesions. The aim of this study was to investigate the effects on redox homeostasis and DNA oxidative damage of exercise training in patients with type 2 diabetes compared with nondiabetic individuals.Methods and Results.12 sedentary type 2 diabetic males (62.1 ± 4.3 yrs) and 12 sedentary healthy males (61.7 ± 3.9 yrs) were exposed to 4-month moderate training, 3 times per week, to evaluate the effect on plasma biomarkers of oxidative stress malondialdehyde and antioxidant status (GSSG, GSH/GSSG, and ascorbic acid) as well as basal and H2O2-induced DNA damage trough alkaline comet assay in peripheral blood lymphocytes. After training, glutathione and ascorbic acid levels increased in both groups, but only in diabetics the malondialdehyde as well as the DNA damage decreased.Conclusion.Our study demonstrates for the first time that moderate exercise training is not only effective in improving the redox homeostasis, through an increase of the endogenous antioxidant defences in healthy as well as in diabetic patients, but also, specifically in diabetic patients, effective in lowering the susceptibility to oxidative DNA damage and the lipid peroxidation levels.


Sign in / Sign up

Export Citation Format

Share Document