Biosynthesis of silver nanoparticles from the novel strain of Streptomyces Sp. BHUMBU-80 with highly efficient electroanalytical detection of hydrogen peroxide and antibacterial activity

2017 ◽  
Vol 5 (6) ◽  
pp. 5624-5635 ◽  
Author(s):  
Rajeev Kumar Gupta ◽  
Vijay Kumar ◽  
Ravi Kumar Gundampati ◽  
Manisha Malviya ◽  
Syed Hadi Hasan ◽  
...  
2020 ◽  
Vol 8 (3) ◽  
pp. 89-96
Author(s):  
Gouse Basha Sheik ◽  
Ali Ismail Ali Abdel Raheim ◽  
Zeyad Abdullah Alzeyadi ◽  
Mohammed Ibrahim AlGhonaim

PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0220575 ◽  
Author(s):  
Mahmoud Y. Alkawareek ◽  
Ahmad Bahlool ◽  
Samer R. Abulateefeh ◽  
Alaaldin M. Alkilany

RSC Advances ◽  
2016 ◽  
Vol 6 (42) ◽  
pp. 36171-36179 ◽  
Author(s):  
B. Ajitha ◽  
Y. Ashok Kumar Reddy ◽  
P. Sreedhara Reddy ◽  
Hwan-Jin Jeon ◽  
Chi Won Ahn

Catalytic reaction between PVA-capped AgNPs and hydrogen peroxide, and the corresponding LSPR optical absorbance spectra as a function of time.


2019 ◽  
Vol 29 (3) ◽  
Author(s):  
Mai Ngọc Tuan Anh

Silver nanoplates (SNPs) having different size were synthesized by a seed-mediated method. The seeds -silver nanoparticles with 4 – 6 nm diameters were synthesized first by reducing silver nitrate with sodium borohydride in the present of Trisodium Citrate and Hydrogen peroxide. Then these seeds were developed by continue reducing Ag\(^+\) ions with various amount of L-Ascorbic acid to form SNPs. Our analysis showed that the concentratrion of L-Ascorbic acid, a secondary reducing agent, played an important role to form SNPs. In addition, the size and in-plane dipole plasmon resonance wavelenght of silver nanoplates were increased when the concentration of added silver nitrate increased. The characterization of SNPs were studied by UV-Vis, FE-SEM, EDS and TEM methods.


2020 ◽  
Vol 36 (4) ◽  
pp. 87-93
Author(s):  
V.Yu. Reshetova ◽  
A.F. Krivoshchepov ◽  
I.A. Butorova ◽  
N.B. Feldman ◽  
S.V. Lutsenko ◽  
...  

Chitosan beads with colloidal silver nanoparticles inclued in the polymer matrix have been obtained by the introduction of chitosan into an acidified nanosilver sol. Dual interconnection of drops of the resulting solution was then carried out by ionotropic gelation at the first stage and covalent crosslinking of the polymer matrix with adipic acid at the second stage. The surface morphology of the obtained beads was studied by scanning electron microscopy. Data of Fourier transform IR spectroscopy confirmed the formation of covalent bonds between chitosan and adipic acid. The antibacterial activity of obtained beads against S. aureus and E. coli was evaluated using agar diffusion test. It was shown that the сhitosan beads modified with nanostructured silver exhibited an antibacterial effect against the tested strains, and they can be used as a basis for creating biodegradable wound healing dressings with a prolonged antibacterial effect. chitosan, silver nanoparticles, antibacterial activity, wound dressings This work was supported by the "Russian Academic Excellence Project 5-100". The study was carried out with the financial support of the Russian Foundation for Basic Research in the framework of the Scientific Project no. 18-29-18039.


2020 ◽  
Vol 21 (10) ◽  
pp. 980-989
Author(s):  
Sampath Shobana ◽  
Sunderam Veena ◽  
S.S.M. Sameer ◽  
K. Swarnalakshmi ◽  
L.A. Vishal

Aims: To evaluate the antibacterial activity of Artocarpus hirsutus mediated seed extract for nanoparticle synthesis. Background: Gastrointestinal bacteria are known for causing deadly infections in humans. They also possess multi-drug resistance and interfere with clinical treatments. Applied nanotechnology has been known to combat such infectious agents with little interference from their special attributes. Here we synthesize silver nanoparticles from Artocarpus hirsutus seed extract against two gastro-intestinal bacterial species: Enterobacter aerogenes and Listeria monocytogenes. Objective: To collect, dry, and process seeds of Artocarpus hirsutus for nanoparticle synthesis. To evaluate the morphological interaction of silver nanoparticles with bacteria. Methods: Artocarpus hirsutus seeds were collected and processed and further silver nanoparticles were synthesized by the co-precipitation method. The synthesized nanoparticles were characterized using XRD, UV, FTIR, and SEM. These nanoparticles were employed to study the antibacterial activity of nanoparticles against Enterobacter aerogenes and Listeria monocytogenes using well diffusion method. Further, morphological interaction of silver nanoparticles on bacteria was studied using SEM. Result: Silver nanoparticles were synthesized using Artocarpus hirsutus seed extract and characterization studies confirmed that silver nanoparticles were spherical in shape with 25-40 nm size. Antibacterial study exhibited better activity against Enterobacter aerogenes with a maximum zone of inhibition than on Listeria monocytogenes. SEM micrographs indicated that Enterobacter aerogenes bacteria were more susceptible to silver nanoparticles due to the absence of cell wall. Also, the size and charge of silver nanoparticles enable easy penetration of the bacterial cell wall. Conclusion: In this study, silver nanoparticles were synthesized using the seed extract of Artocarpus hirsutus for the first time exploiting the fact that Moraceae species have high phytonutrient content which aided in nanoparticle synthesis. This nanoparticle can be employed for large scale synthesis which when coupled with the pharmaceutical industry can be used to overcome the problems associated with conventional antibiotics to treat gastrointestinal bacteria.


Sign in / Sign up

Export Citation Format

Share Document