Numerical simulation of partially blocked electrodes under cyclic voltammetry conditions: influence of the block unit geometry on the global electrochemical properties

2005 ◽  
Vol 577 (2) ◽  
pp. 211-221 ◽  
Author(s):  
François G. Chevallier ◽  
Trevor J. Davies ◽  
Oleksiy V. Klymenko ◽  
Li Jiang ◽  
Timothy G.J. Jones ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 624 ◽  
Author(s):  
Alina Iuliana Pruna ◽  
Nelly Ma. Rosas-Laverde ◽  
David Busquets Mataix

Graphene oxide (GO)-modified polypyrrole (PPy) coatings were obtained by electrochemical methods in the presence of the anionic surfactant, sodium dodecyl sulfate (SDS). The structure, morphology, and electrochemical properties of the coatings were assessed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM) and cyclic voltammetry at varying scan rates, respectively. The properties of the obtained coatings were analyzed with the GO and PPy loadings and electrodeposition mode. The hybrid coatings obtained galvanostatically showed a coarser appearance than those deposited by cyclic voltammetry CV mode and improved performance, respectively, which was further enhanced by GO and PPy loading. The capacitance enhancement can be attributed to the SDS surfactant that well dispersed the GO sheets, thus allowing the use of lower GO content for improved contribution, while the choice of suitable electrodeposition parameters is highly important for improving the applicability of GO-modified PPy coatings in energy storage applications.


2017 ◽  
Vol 727 ◽  
pp. 698-704 ◽  
Author(s):  
Xian Wei Wang ◽  
Xiao Er Wang ◽  
Hui Chao Zhang ◽  
Qian Qian Zhu ◽  
Dong Li Zheng ◽  
...  

The structural and electrochemical properties of lanthanum manganate (LaMnO3) powder prepared by the sol-gel method are researched in this article. The powder calcined at 600 °C showed amorphous, and the powder calcined at 700-800 °C showed the pure phase of the LaMnO3. The grains with the size of about 80-120 nm were agglomerating together. Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical properties in alkaline environment. The electrochemical properties calcined at 700 °C showed a specific capacitance of 73 F/g at the current density of 0.5 A/g. The raw materials for preparing the LaMnO3 powder are cheap, and the operation method is simple.


2021 ◽  
Author(s):  
Patrick Nimax ◽  
Nils Rotthowe ◽  
Florian Zoller ◽  
Tobias Blockhaus ◽  
Friedrich Ernst Wagner ◽  
...  

Compounds of the 5-amino- (ATCC) and 5-nitro-1,2,3,4-tetracyanocyclopentadienide (NTCC) ligand with iron(II) and iron(III), silver(I) and potassium(I) were prepared and characterized by electrochemical methods using EPR, cyclic voltammetry and Mößbauer spectroscopy...


2019 ◽  
Vol 48 (35) ◽  
pp. 13205-13211 ◽  
Author(s):  
Stefan S. Rohner ◽  
Niklas W. Kinzel ◽  
Christophe Werlé ◽  
Walter Leitner

Systematic series of iron(+iii) and manganese(+ii) complexes are investigated by cyclic voltammetry to elucidate how the electronic properties of the ligands influence overpotential and catalytic current in the context of water oxidation catalysis.


2008 ◽  
Vol 8 (3) ◽  
pp. 1494-1496 ◽  
Author(s):  
Xu Chun Song ◽  
Yi Fan Zheng ◽  
E. Yang ◽  
Yun Wang

The α-MnO2 spherical assemblies were prepared via a facile hydrothermal approach in the presence of sodium dodecyl sulfate (SDS). The assembled nanostructures were composed of the MnO2 nanorods with 150–200 nm in width and several micrometers in length. The products were characterized by SEM, TEM and XRD. The electrochemical characterization was carried out by cyclic voltammetry, which indicated that the α-MnO2 spherical assemblies were of an excellent electrode material for supercapacitor.


2006 ◽  
Vol 596 (1) ◽  
pp. 25-32 ◽  
Author(s):  
François G. Chevallier ◽  
Nicole Fietkau ◽  
Javier del Campo ◽  
Roser Mas ◽  
Francesc Xavier Muñoz ◽  
...  

2015 ◽  
Vol 761 ◽  
pp. 452-456 ◽  
Author(s):  
Raja Noor Amalina Raja Seman ◽  
Rose Farahiyan Munawar ◽  
Jeeferie Abd Razak ◽  
Nor Najihah Zulkapli ◽  
Mohd Shahril Amin Bistamam ◽  
...  

In this study, a mixture of activated carbon (AC) and graphene (G) was coated onto the stainless steel (SS) mesh to produce an electrode for the electrochemical capacitor (EC). Different materials, such as carbon nanotube (CNT) mixed with G, were also used in this experiment to compare the electrochemical properties of both electrodes. The electrochemical properties of the electrode were determined by using cyclic voltammetry (CV). The CV curves of the AC/G electrodes showed good capacitive behaviour, and the highest capacitance values obtained for AC/G and CNT/G electrodes in 1M H2SO4 at 1 mVs-1 were 13 Fg-1 and 4.34 Fg-1, respectively. Meanwhile, the highest capacitance values obtained in 6M KOH at 1 mVs-1 were 14 Fg-1 and 12.07 Fg-1 for AC/G and CNT/G electrodes, respectively.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 507 ◽  
Author(s):  
Nelly Maria Rosas-Laverde ◽  
Alina Pruna ◽  
David Busquets-Mataix

Nanostructured polypyrrole coating was applied on carbon paper via simple dip-coating and electrochemical approach. Hybridization with nanocarbon materials (graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs)) and their effect as an anchoring hybrid layer for the growth of polypyrrole towards improving electrochemical properties are studied. The loading of each component and their w/w ratio were evaluated. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and Raman spectroscopy were employed to characterize the properties of the coatings. The electrochemical properties were investigated by cyclic voltammetry. The results indicated the electrodeposition of polypyrrole is enhanced by the addition of MWCNTs to the GO layer due to the formation of a hierarchical network. The electrochemical performance of the modified electrode was shown to be highly dependent on the employed w/w ratio, reaching a capacitance value of about 40 mF cm−2 for a carbon paper substrate modified with GO:MWCNT in a w/w ratio of 1:2.5 and PPy layer deposited by cyclic voltammetry for 30 cycles. The contribution to total stored charge was found to be primary from the inner capacitance component of about 95.5% contribution.


Sign in / Sign up

Export Citation Format

Share Document