The effect of short-term changes in body mass distribution on feed-forward postural control

2009 ◽  
Vol 19 (5) ◽  
pp. 931-941 ◽  
Author(s):  
Xiaoyan Li ◽  
Alexander S. Aruin
PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246605
Author(s):  
Hwigeum Jeong ◽  
A. Wayne Johnson ◽  
J. Brent Feland ◽  
Spencer R. Petersen ◽  
Jared M. Staten ◽  
...  

Context Obesity is a growing global health concern. The increased body mass and altered mass distribution associated with obesity may be related to increases in plantar shear that putatively leads to physical functional deficits. Therefore, measurement of plantar shear may provide unique insights on the effects of body mass and body distribution on physical function or performance. Purpose 1) To investigate the effects of body mass and distribution on plantar shear. 2) To examine how altered plantar shear influences postural control and gait kinetics. Hypothesis 1) a weighted vest forward distributed (FV) would shift the center of pressure (CoP) location forward during standing compared with a weighted vest evenly distributed (EV), 2) FV would increase plantar shear spreading forces more than EV during standing, 3) FV would increase postural sway during standing while EV would not, and 4) FV would elicit greater compensatory changes during walking than EV. Methods Twenty healthy young males participated in four different tests: 1) static test (for measuring plantar shear and CoP location without acceleration, 2) bilateral-foot standing postural control test, 3) single-foot standing postural test, and 4) walking test. All tests were executed in three different weight conditions: 1) unweighted (NV), 2) EV with 20% added body mass, and 3) FV, also with 20% added body mass. Plantar shear stresses were measured using a pressure/shear device, and several shear and postural control metrics were extracted. Repeated measures ANOVAs with Holms post hoc test were used to compare each metric among the three conditions (α = 0.05). Results FV and EV increased both AP and ML plantar shear forces compared to NV. FV shifted CoP forward in single-foot trials. FV and EV showed decreased CoP range and velocity and increased Time-to-Boundary (TTB) during postural control compared to NV. EV and FV showed increased breaking impulse and propulsive impulse compared to NV. In addition, EV showed even greater impulses than FV. While EV increased ML plantar shear spreading force, FV increased AP plantar shear spreading force during walking. Conclusion Added body mass increases plantar shear spreading forces. Body mass distribution had greater effects during dynamic tasks. In addition, healthy young individuals seem to quickly adapt to external stimuli to control postural stability. However, as this is a first step study, follow-up studies are necessary to further support the clinical role of plantar shear in other populations such as elderly and individuals with obesity or diabetes.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3245
Author(s):  
Emma C. Atakpa ◽  
Adam R. Brentnall ◽  
Susan Astley ◽  
Jack Cuzick ◽  
D. Gareth Evans ◽  
...  

We evaluated the association between short-term change in body mass index (BMI) and breast density during a 1 year weight-loss intervention (Manchester, UK). We included 65 premenopausal women (35–45 years, ≥7 kg adult weight gain, family history of breast cancer). BMI and breast density (semi-automated area-based, automated volume-based) were measured at baseline, 1 year, and 2 years after study entry (1 year post intervention). Cross-sectional (between-women) and short-term change (within-women) associations between BMI and breast density were measured using repeated-measures correlation coefficients and multivariable linear mixed models. BMI was positively correlated with dense volume between-women (r = 0.41, 95%CI: 0.17, 0.61), but less so within-women (r = 0.08, 95%CI: −0.16, 0.28). There was little association with dense area (between-women r = −0.12, 95%CI: −0.38, 0.16; within-women r = 0.01, 95%CI: −0.24, 0.25). BMI and breast fat were positively correlated (volume: between r = 0.77, 95%CI: 0.69, 0.84, within r = 0.58, 95%CI: 0.36, 0.75; area: between r = 0.74, 95%CI: 0.63, 0.82, within r = 0.45, 95%CI: 0.23, 0.63). Multivariable models reported similar associations. Exploratory analysis suggested associations between BMI gain from 20 years and density measures (standard deviation change per +5 kg/m2 BMI: dense area: +0.61 (95%CI: 0.12, 1.09); fat volume: −0.31 (95%CI: −0.62, 0.00)). Short-term BMI change is likely to be positively associated with breast fat, but we found little association with dense tissue, although power was limited by small sample size.


2021 ◽  
pp. 000313482110241
Author(s):  
Christine Tung ◽  
Junko Ozao-Choy ◽  
Dennis Y. Kim ◽  
Christian de Virgilio ◽  
Ashkan Moazzez

There are limited studies regarding outcomes of replacing an infected mesh with another mesh. We reviewed short-term outcomes following infected mesh removal and whether placement of new mesh is associated with worse outcomes. Patients who underwent hernia repair with infected mesh removal were identified from 2005 to 2018 American College of Surgeons-National Surgical Quality Improvement Program database. They were divided into new mesh (Mesh+) or no mesh (Mesh-) groups. Bivariate and multivariate logistic regression analyses were used to compare morbidity between the two groups and to identify associated risk factors. Of 1660 patients, 49.3% received new mesh, with higher morbidity in the Mesh+ (35.9% vs. 30.3%; P = .016), but without higher rates of surgical site infection (SSI) (21.3% vs. 19.7%; P = .465). Mesh+ had higher rates of acute kidney injury (1.3% vs. .4%; P = .028), UTI (3.1% vs. 1.3%, P = .014), ventilator dependence (4.9% vs. 2.4%; P = .006), and longer LOS (8.6 vs. 7 days, P < .001). Multivariate logistic regression showed new mesh placement (OR: 1.41; 95% CI: 1.07-1.85; P = .014), body mass index (OR: 1.02; 95% CI: 1.00-1.03; P = .022), and smoking (OR: 1.43; 95% CI: 1.05-1.95; P = .025) as risk factors independently associated with increased morbidity. New mesh placement at time of infected mesh removal is associated with increased morbidity but not with SSI. Body mass index and smoking history continue to contribute to postoperative morbidity during subsequent operations for complications.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 1019
Author(s):  
Barbara Frączek ◽  
Aleksandra Pięta ◽  
Adrian Burda ◽  
Paulina Mazur-Kurach ◽  
Florentyna Tyrała

The aim of this meta-analysis was to review the impact of a Paleolithic diet (PD) on selected health indicators (body composition, lipid profile, blood pressure, and carbohydrate metabolism) in the short and long term of nutrition intervention in healthy and unhealthy adults. A systematic review of randomized controlled trials of 21 full-text original human studies was conducted. Both the PD and a variety of healthy diets (control diets (CDs)) caused reduction in anthropometric parameters, both in the short and long term. For many indicators, such as weight (body mass (BM)), body mass index (BMI), and waist circumference (WC), impact was stronger and especially found in the short term. All diets caused a decrease in total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), albeit the impact of PD was stronger. Among long-term studies, only PD cased a decline in TC and LDL-C. Impact on blood pressure was observed mainly in the short term. PD caused a decrease in fasting plasma (fP) glucose, fP insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) and glycated hemoglobin (HbA1c) in the short run, contrary to CD. In the long term, only PD caused a decrease in fP glucose and fP insulin. Lower positive impact of PD on performance was observed in the group without exercise. Positive effects of the PD on health and the lack of experiments among professional athletes require longer-term interventions to determine the effect of the Paleo diet on athletic performance.


1997 ◽  
Vol 12 (3) ◽  
pp. 306-314 ◽  
Author(s):  
Viktor Müller ◽  
Bettina Mohr ◽  
Regina Rosin ◽  
Friedemann Pulvermüller ◽  
Friedemann Müller ◽  
...  

2020 ◽  
Vol 30 (12) ◽  
pp. 663-674
Author(s):  
V. Queruel ◽  
R. Kabore ◽  
A. Guillaume ◽  
K. Moreau ◽  
K. Leffondre ◽  
...  

2005 ◽  
Vol 99 (2) ◽  
pp. 499-504 ◽  
Author(s):  
Ralph Beneke ◽  
Matthias Hütler ◽  
Marcus Jung ◽  
Renate M. Leithäuser

Whether age-related differences in blood lactate concentrations (BLC) reflect specific BLC kinetics was analyzed in 15 prepubescent boys (age 12.0 ± 0.6 yr, height 1.54 ± 0.06 m, body mass 40.0 ± 5.2 kg), 12 adolescents (16.3 ± 0.7 yr, 1.83 ± 0.07 m, 68.2 ± 7.5 kg), and 12 adults (27.2 ± 4.5 yr, 1.83 ± 0.06 m, 81.6 ± 6.9 kg) by use of a biexponential four-parameter kinetics model under Wingate Anaerobic Test conditions. The model predicts the lactate generated in the extravasal compartment (A), invasion ( k1), and evasion ( k2) of lactate into and out of the blood compartment, the BLC maximum (BLCmax), and corresponding time (TBLCmax). BLCmax and TBLCmax were lower ( P < 0.05) in boys (BLCmax 10.2 ± 1.3 mmol/l, TBLCmax 4.1 ± 0.4 min) than in adolescents (12.7 ± 1.0 mmol/l, 5.5 ± 0.7 min) and adults (13.7 ± 1.4 mmol/l, 5.7 ± 1.1 min). No differences were found in A related to the muscle mass (AMM) and k1 between boys (AMM: 22.8 ± 2.7 mmol/l, k1: 0.865 ± 0.115 min−1), adolescents (22.7 ± 1.3 mmol/l, 0.692 ± 0.221 min−1), and adults (24.7 ± 2.8 mmol/l, 0.687 ± 0.287 min−1). The k2 was higher ( P < 0.01) in boys (2.87 10−2 ± 0.75 10−2 min−1) than in adolescents (2.03 × 10−2 ± 0.89 × 10−2 min−1) and adults (1.99 × 10−2 ± 0.93 × 10−2 min−1). Age-related differences in the BLC kinetics are unlikely to reflect differences in muscular lactate or lactate invasion but partly faster elimination out of the blood compartment.


2019 ◽  
Vol 23 (3) ◽  
pp. 375-383
Author(s):  
Muhittin Ertilav ◽  
W. Nathan Levin ◽  
Aygul Celtik ◽  
Fatih Kircelli ◽  
Stefano Stuard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document