Comparative analysis of the enzyme activities and the bacterial community structure based on the aeration source supplied to an MBR to treat urban wastewater

2013 ◽  
Vol 128 ◽  
pp. 471-479 ◽  
Author(s):  
Kadiya Calderón ◽  
Patricia Reboleiro-Rivas ◽  
Francisco A. Rodríguez ◽  
José M. Poyatos ◽  
Jesús González-López ◽  
...  
2017 ◽  
Vol 33 (6) ◽  
pp. 1483-1495 ◽  
Author(s):  
Alejandro Rodriguez-Sanchez ◽  
Juan Carlos Leyva-Diaz ◽  
Alejandro Gonzalez-Martinez ◽  
Jose Manuel Poyatos

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1017
Author(s):  
Zhiping Liu ◽  
Wenyan Xie ◽  
Zhenxing Yang ◽  
Xuefang Huang ◽  
Huaiping Zhou

The application of organic fertilizer affects soil microbes and enzyme activities. In this study, we explored the effects of various long-term different fertilization treatments (manure, M; chemical fertilizer, NP; manure + chemical fertilizer, MNP; and no fertilizer, CK) on bacterial community structure and soil sucrase, urease, and alkaline phosphatase activities in Shaping, Hequ, China. High-throughput sequencing was used to amplify the third to the fourth hypervariable region of the 16S ribosomal RNA for analysis of the bacterial community structure. Enzyme activities were determined by colorimetry. Soil treated with MNP had the highest bacterial Abundance-based Coverage Estimator index and enzyme activities. The principal coordinates analysis results showed significant differences among the various fertilization treatments (p < 0.001). Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes, and Chloroflexi were consistently dominant in all soil samples. The redundancy analysis and Monte Carlo permutation tests showed that the soil bacterial communities were significantly correlated with alkali-hydrolyzable nitrogen, organic matter, urease, and alkaline phosphatase. Our results reveal the fundamentally different effects that organic and inorganic fertilizers have on soil bacterial communities and their functions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Quanqing Deng ◽  
Taobing Yu ◽  
Zhen Zeng ◽  
Umair Ashraf ◽  
Qihan Shi ◽  
...  

Silicon (Si) deficiency, caused by acidic soil and rainy climate, is a major constraint for sugarcane production in southern China. Si application generally improves sugarcane growth; however, there are few studies on the relationships between enhanced plant growth, changes in rhizosphere soil, and bacterial communities. A field experiment was conducted to measure sugarcane agronomic traits, plant nutrient contents, rhizosphere soil enzyme activities and chemical properties, and the rhizosphere bacterial community diversity and structure of three predominant sugarcane varieties under two Si treatments, i.e., 0 and 200 kg of silicon dioxide (SiO2) ha−1 regarded as Si0 and Si200, respectively. Results showed that Si application substantially improved the sugarcane stalk fresh weight and Si, phosphorus (P), and potassium (K) contents comparing to Si0, and had an obvious impact on rhizosphere soil pH, available Si (ASi), available P (AP), available K (AK), total phosphorus (TP), and the activity of acid phosphatase. Furthermore, the relative abundances of Proteobacteria showed a remarkable increase in Si200, which may be the dominant group in sugarcane growth under Si application. Interestingly, the AP was noticed as a major factor that caused bacterial community structure differences between the two Si treatments according to canonical correspondence analysis (CCA). In addition, the association network analysis indicated that Si application enriched the rhizosphere bacterial network, which could be beneficial to sugarcane growth. Overall, appropriate Si application, i.e., 200 kg SiO2 ha−1 promoted sugarcane growth, changed rhizosphere soil enzyme activities and chemical properties, and bacterial community structures.


2012 ◽  
Vol 103 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Kadiya Calderón ◽  
Alejandro González-Martínez ◽  
Camino Montero-Puente ◽  
Patricia Reboleiro-Rivas ◽  
José M. Poyatos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document