Methane emission during on-site pre-storage of animal manure prior to anaerobic digestion at biogas plant: Effect of storage temperature and addition of food waste

2018 ◽  
Vol 225 ◽  
pp. 272-279 ◽  
Author(s):  
Lu Feng ◽  
Alastair James Ward ◽  
Veronica Moset ◽  
Henrik Bjarne Møller
Author(s):  
Md. Abdullah Hil Baky ◽  
Muhammad Nazmul Hassan Khan ◽  
Md. Faisal Kader ◽  
Habibullah Amin Chowdhury

Anaerobic Digestion is a biological process that takes place naturally when microorganisms break down organic matter in the absence of oxygen. In an enclosed chamber, controlled anaerobic digestion of organic matter produces biogas which is predominantly methane. The produced methane then can be directly used for rural cooking; or after certain conditioning, can be used in onsite power generation, heating homes or as vehicular fuel. Besides, food waste is increasingly becoming a major problem in every society imposing serious economic and environmental concerns. For this reason, many contemporary researches are emphasizing in finding sustainable solutions to recycle and produce energy from such waste. In this context, this paper aims to study and optimize the production of biogas from food waste (rice). For the experiment, an existing wet digestion biogas plant installed in Islamic University of Technology was used. The food waste (rice) for the research was collected from the cafeteria of Islamic University of Technology. Furthermore, a process simulation was performed by PROII software to estimate the methane production rate. Eventually, the simulated and experimental results were compared. The duration of the study period was 120 days. The experimental results showed that an average specific gas production of 14.4 kg-mol/hr can be obtained for 0.05 kg-mol/hr of starch loading rate. In case of the simulated results, the gas production was found to be 19.82 kg-mol/hr for the same loading rate of starch. The percentage of methane and CO2 obtained in the biogas plant was 69% and 29% respectively.


2019 ◽  
Vol 11 (14) ◽  
pp. 3875 ◽  
Author(s):  
Hegde ◽  
Trabold

Anaerobic digestion (AD) is widely considered a more sustainable food waste management method than conventional technologies, such as landfilling and incineration. To improve economic performance while maintaining AD system stability at commercial scale, food waste is often co-digested with animal manure, but there is increasing interest in food waste-only digestion. We investigated the stability of anaerobic digestion with mixed cafeteria food waste (CFW) as the main substrate, combined in a semi-continuous mode with acid whey, waste bread, waste energy drinks, and soiled paper napkins as co-substrates. During digestion of CFW without any co-substrates, the maximum specific methane yield (SMY) was 363 mL gVS−1d−1 at organic loading rate (OLR) of 2.8 gVSL−1d−1, and reactor failure occurred at OLR of 3.5 gVSL−1d−1. Co-substrates of acid whey, waste energy drinks, and waste bread resulted in maximum SMY of 455, 453, and 479 mL gVS−1d−1, respectively, and it was possible to achieve stable digestion at OLR as high as 4.4 gVSL−1d−1. These results offer a potential approach to high organic loading rate digestion of food waste without using animal manure. Process optimization for the use of unconventional co-substrates may help enable deployment of anaerobic digesters for food waste management in urban and institutional applications and enable increased diversion of food waste from landfills in heavily populated regions.


2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 502
Author(s):  
Andrea Visca ◽  
Anna Barra Caracciolo ◽  
Paola Grenni ◽  
Luisa Patrolecco ◽  
Jasmin Rauseo ◽  
...  

Anaerobic digestion is one of the best ways to re-use animal manure and agricultural residues, through the production of combustible biogas and digestate. However, the use of antibiotics for preventing and treating animal diseases and, consequently, their residual concentrations in manure, could introduce them into anaerobic digesters. If the digestate is applied as a soil fertilizer, antibiotic residues and/or their corresponding antibiotic resistance genes (ARGs) could reach soil ecosystems. This work investigated three common soil emerging contaminants, i.e., sulfamethoxazole (SMX), ciprofloxacin (CIP), enrofloxacin (ENR), their ARGs sul1, sul2, qnrS, qepA, aac-(6′)-Ib-cr and the mobile genetic element intI1, for one year in a full scale anaerobic plant. Six samplings were performed in line with the 45-day hydraulic retention time (HRT) of the anaerobic plant, by collecting input and output samples. The overall results show both antibiotics and ARGs decreased during the anaerobic digestion process. In particular, SMX was degraded by up to 100%, ENR up to 84% and CIP up to 92%, depending on the sampling time. In a similar way, all ARGs declined significantly (up to 80%) in the digestate samples. This work shows how anaerobic digestion can be a promising practice for lowering antibiotic residues and ARGs in soil.


Sign in / Sign up

Export Citation Format

Share Document