Two-phase synthesis of Fe-loaded hydrochar for As removal: The distinct effects of initial pH, reaction time and Fe/hydrochar ratio

2022 ◽  
Vol 302 ◽  
pp. 114058
Author(s):  
Fabrizio Di Caprio ◽  
Andrea Pellini ◽  
Robertino Zanoni ◽  
Maria Luisa Astolfi ◽  
Pietro Altimari ◽  
...  
Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3512-3518
Author(s):  
Xiangyu Wang ◽  
Shanshan Wang ◽  
Shuyu Qian ◽  
Naiwei Liu ◽  
Xinyue Dou ◽  
...  

A mechanistic study on the two-phase synthesis of heteroleptic Au nanoclusters is reported here.


2021 ◽  
Author(s):  
Wei Liu ◽  
Qi Sun ◽  
Haifeng Zou ◽  
Xiangting Zhang ◽  
Xue Xiao ◽  
...  

BaGdF5:RE3+ (RE = Ce/Dy/Eu) octahedra were synthesized via a facile ionic liquid/H2O two-phase system. Multi-color emissions have been realized.


2010 ◽  
Vol 10 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. Murillo ◽  
J. Sarasa ◽  
M. Lanao ◽  
J. L. Ovelleiro

The degradation of chlorpyriphos by different advanced oxidation processes such as photo-Fenton, TiO2, TiO2/H2O2, O3 and O3/H2O2 was investigated. The photo-Fenton and TiO2 processes were optimized using a solar chamber as light source. The optimum dosages of the photo-Fenton treatment were: [H2O2]=0.01 M; [Fe3 + ]=10 mg l−1; initial pH = 3.5. With these optimum conditions total degradation was observed after 15 minutes of reaction time. The application of sunlight was also efficient as total degradation was achieved after 60 minutes. The optimum dosage using only TiO2 as catalyst was 1,000 mg l−1, obtaining the maximum degradation at 20 minutes of reaction time. On the other hand, the addition of 0.02 M of H2O2 to a lower dosage of TiO2 (10 mg l−1) provides the same degradation. The ozonation treatment achieved complete degradation at 30 minutes of reaction time. On the other hand, it was observed that the degradation was faster by adding H2O2 (H2O2/O3 molar ratio = 0.5). In this case, total degradation was observed after 20 minutes.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
M. Behbahani ◽  
M.R. Alavi Moghaddam ◽  
M. Arami

The aim of this study is to examine the effect of operational parameters on fluoride removal using electrocoagulation method. For this purpose, various operational parameters including initial pH, initial fluoride concentration, applied current, reaction time, electrode connection mode, anode material, electrolyte salt, electrolyte concentration, number of electrodes and interelectrode distance were investigated. The highest defluoridation efficiency achieved at initial pH 6. In the case of initial fluoride concentration, maximum removal efficiency (98.5%) obtained at concentration of 25mg/l. The increase of applied current and reaction time improved defluoridation efficiency up to 99%. The difference of fluoride removal efficiencies between monopolar and bipolar series and monopolar parallel were significant, especially at reaction time of 5 min. When aluminum used as anode material, higher removal efficiency (98.5%) achieved compared to that of iron anode (67.7%). The best electrolyte salt was NaCl with the maximum defluoridation efficiency of 98.5% compared to KNO3 and Na2SO4. The increase of NaCl had no effect on defluoridation efficiency. Number of electrodes had little effect on the amounts of Al3+ ions released in the solution and as a result defluoridation efficiency. Almost the same fluoride removal efficiency obtained for different interelectrode distances.


2021 ◽  
Vol 37 (1) ◽  
pp. 65-70
Author(s):  
Aram Dokht Khatibi ◽  
Kethineni Chandrika ◽  
Ferdos Kord Mostafapour ◽  
Ali Akbar Sajadi ◽  
Davoud Balarak

Conventional wastewater treatment is not able to effectively remove Aromatic hydrocarbons such as Naphthalene, so it is important to remove the remaining antibiotics from the environment. The aim of this study was to evaluate the efficiency of UV/ZnOphotocatalytic process in removing naphthalene antibiotics from aqueous solutions.This was an experimental-applied study that was performed in a batch system on a laboratory scale. The variables studied in this study include the initial pH of the solution, the dose of ZnO, reaction time and initial concentration of Naphthalene were examined. The amount of naphthalene in the samples was measured using GC.The results showed that by decreasing the pH and decreasing the initial concentration of naphthalene and increasing the contact time, the efficiency of the process was developed. However, an increase in the dose of nanoparticles to 0.8 g/L had enhance the efficiency of the process was enhanced, while increasing its amount to values higher than 0.8 g/L has been associated with a decrease in removal efficiency.The results of this study showed that the use of UV/ZnOphotocatalytic process can be addressed as a well-organized method to remove naphthalene from aqueous solutions.


2014 ◽  
Vol 132 ◽  
pp. 465-471 ◽  
Author(s):  
Mingjun Dong ◽  
Zhihan Nan ◽  
Panpan Liu ◽  
Yanjun Zhang ◽  
Zhonghua Xue ◽  
...  

2019 ◽  
Vol 93 ◽  
pp. 02005 ◽  
Author(s):  
Madhuri Damaraju ◽  
Debraj Bhattacharyya ◽  
Tarun Panda ◽  
Kiran Kumar Kurilla

A continuous bipolar mode electrocoagulation (CBME) unit was used in this study for polishing a biologically treated distillery wastewater at laboratory scale. This study focuses on optimizing the process for removal of Total Organic Carbon (TOC) from an anaerobically-treated distillery wastewater. Response surface methodology (RSM) was used for optimizing the process. The study was conducted by varying three operating parameters: Initial pH (2-10), reaction time (0.5-15 min), and current density (13-40 A/sqm). High R-square values, above 0.9, were obtained with ANOVA. Optimal point was observed to be at pH-6.04, Reaction time-11.63 min, current density-39.2 A/sqm. Experimental values of TOC removal at optimal point were found to be 73% against maximum predicted value of 79%. Color removal efficiency was observed to be 85% at the optimal points. It can be concluded that CBME system can be a suitable alternative for removal of recalcitrant carbon and color post-biological treatment in distillery wastewaters.


Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 242 ◽  
Author(s):  
Kun Chen ◽  
Jiajia Zhao ◽  
Xiaohan Shi ◽  
Qayum Abdul ◽  
Zhanmei Jiang

The characterization and antioxidant activity on Maillard reaction products (MRPs) derived from xylose and bovine casein hydrolysate (BCH) was investigated at 100 °C and initial pH 8.0 as a function of reaction time. The pH values and free amino groups contents of xylose–BCH MRPs remarkably decreased with the reaction time up to 8 h, whereas their browning intensities significantly increased (p < 0.05). After 4 h of heat treatment, the fluorescence properties of xylose–BCH MRPs reached the maximum. There was a production of higher and smaller molecular substances in xylose–BCH MRPs with an increased reaction time, as analyzed by size exclusion chromatography. The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging capacity and ferrous reducing activity of xylose-BCH MRPs gradually increased with the reaction time extended from 0 to 8 h.


2012 ◽  
Vol 134 (14) ◽  
pp. 6498-6498 ◽  
Author(s):  
Ying Li ◽  
Oksana Zaluzhna ◽  
Bolian Xu ◽  
Yuan Gao ◽  
Jacob M. Modest ◽  
...  

2011 ◽  
Vol 347-353 ◽  
pp. 1949-1952 ◽  
Author(s):  
Liang Li ◽  
Bing Zhe Xu ◽  
Chang Yu Lin ◽  
Xiao Min Hu

Zidovudine wastewater is difficult to biodegradation due to high COD and toxicity. The synergetic treatment of Zidovudine wastewater by Ultrasonic and iron-carbon micro-electrolysis technology was studied. The influence of initial pH, reaction time, mass ratio of iron and carbon and mass ratio of iron and water on degradation rate of COD was researched. The result showed that the COD removal rate was only about 54.3% and the degradation speed is very slow when iron-carbon micro-electrolysis treated Zidovudine wastewater separately. However, when ultrasonic synergy micro-electrolysis to treat Zidovudine wastewater, the COD removal rate could was up to 85% and the reaction time was also decreased. Moreover, the BOD5 / COD rose from 0.15 to 0.35, which meant the wastewater became easily biodegradable.


Sign in / Sign up

Export Citation Format

Share Document