Huangkui capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Akt pathways, compared to α-lipoic acid

2015 ◽  
Vol 173 ◽  
pp. 256-265 ◽  
Author(s):  
Zhi-Min Mao ◽  
Shan-Mei Shen ◽  
Yi-Gang Wan ◽  
Wei Sun ◽  
Hao-Li Chen ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Chang-Chun Hsiao ◽  
Wei-Han Huang ◽  
Kuang-Hung Cheng ◽  
Chien-Te Lee

Background. Diabetic nephropathy is the most common cause of end-stage renal disease. Traditional therapy for diabetic nephropathy has focused on supportive treatment, and there is no significant effective therapy. We investigated the effect of low-energy extracorporeal shock wave therapy on a diabetic nephropathy rat model. Methods. Streptozotocin-induced diabetic nephropathy rats were treated with six sessions of low-energy extracorporeal shock wave therapy (weekly for six consecutive weeks) or left untreated. We assessed urinary creatinine and albumin, glomerular volume, renal fibrosis, podocyte number, renal inflammation, oxidative stress, and tissue repair markers (SDF-1 and VEGF) six weeks after the completion of treatment. Results. The six-week low-energy extracorporeal shock wave therapy regimen decreased urinary albumin excretion as well as reduced glomerular hypertrophy and renal fibrosis in the rat model of diabetic nephropathy. Moreover, low-energy extracorporeal shock wave therapy increased podocyte number in diabetic nephropathy rats. This was likely primarily attributed to the fact that low-energy extracorporeal shock wave therapy reduced renal inflammation and oxidative stress as well as increased tissue repair potency and cell proliferation. Conclusions. Low-energy extracorporeal shock wave therapy preserved kidney function in diabetic nephropathy. Low-energy extracorporeal shock wave therapy may serve as a novel noninvasive and effective treatment of diabetic nephropathy.


2012 ◽  
Vol 302 (12) ◽  
pp. F1606-F1615 ◽  
Author(s):  
Jorge F. Giani ◽  
Valeria Burghi ◽  
Luciana C. Veiras ◽  
Analía Tomat ◽  
Marina C. Muñoz ◽  
...  

Angiotensin (ANG)-(1–7) is known to attenuate diabetic nephropathy; however, its role in the modulation of renal inflammation and oxidative stress in type 2 diabetes is poorly understood. Thus in the present study we evaluated the renal effects of a chronic ANG-(1–7) treatment in Zucker diabetic fatty rats (ZDF), an animal model of type 2 diabetes and nephropathy. Sixteen-week-old male ZDF and their respective controls [lean Zucker rats (LZR)] were used for this study. The protocol involved three groups: 1) LZR + saline, 2) ZDF + saline, and 3) ZDF + ANG-(1–7). For 2 wk, animals were implanted with subcutaneous osmotic pumps that delivered either saline or ANG-(1–7) (100 ng·kg−1·min−1) ( n = 4). Renal fibrosis and tissue parameters of oxidative stress were determined. Also, renal levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), ED-1, hypoxia-inducible factor-1α (HIF-1α), and neutrophil gelatinase-associated lipocalin (NGAL) were determined by immunohistochemistry and immunoblotting. ANG-(1–7) induced a reduction in triglyceridemia, proteinuria, and systolic blood pressure (SBP) together with a restoration of creatinine clearance in ZDF. Additionally, ANG-(1–7) reduced renal fibrosis, decreased thiobarbituric acid-reactive substances, and restored the activity of both renal superoxide dismutase and catalase in ZDF. This attenuation of renal oxidative stress proceeded with decreased renal immunostaining of IL-6, TNF-α, ED-1, HIF-1α, and NGAL to values similar to those displayed by LZR. Angiotensin-converting enzyme type 2 (ACE2) and ANG II levels remained unchanged after treatment with ANG-(1–7). Chronic ANG-(1–7) treatment exerts a renoprotective effect in ZDF associated with a reduction of SBP, oxidative stress, and inflammatory markers. Thus ANG-(1–7) emerges as a novel target for treatment of diabetic nephropathy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fangfang Sun ◽  
Deqi Jiang ◽  
Juanjuan Cai

Abstract Background Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes, valsartan and α-lipoic acid alone or in combination has been used for the treatment of patients with DN. However, some results in these clinical reports were still controversial. The purpose of this study was to evaluate the efficacy of valsartan combined with α-lipoic acid on renal function in patients with DN. Methods We searched the electronic databases including PubMed, Sciencedirect, EMBASE, Cochrane library, Chinese national knowledge infrastructure (CNKI) and Wanfang databases, and the publication deadline was limited to January 2020. Randomized controlled trials (RCTs) evaluating the effects of valsartan combined with α-lipoic acid in DN patients were included. Pooled estimates were conducted using a fixed or random effect model. The outcomes included urinary albumin excretion rate (UAER), and the level of urinary albumin, β2-microglobulin (β2-MG), hypersensitive C-reactive protein (hs-CRP) and oxidative stress. Results 11 studies with 1294 participants were included in this study. The pooled analysis indicated that α-lipoic acid combined with valsartan could remarkably reduce UAER (P < 0.00001, SMD = -1.95, 95%CI = -2.55 to − 1.20; P = 0.03, SMD = -0.85, 95%CI = -1.59 to − 0.1) and the level of urinary albumin (P = 0.001, SMD = -1.48, 95%CI = − 2.38 to − 0.58; P = 0.01, SMD = -1.67, 95%CI = -3.00 to − 0.33), β2-MG (P < 0.001,SMD = − 2.59, 95%CI = -3.78 to − 1.40; P = 0.03, SMD = -0.48, 95%CI = -0.93 to − 0.04) when compared with valsartan or lipoic acid monotherapy in patients with DN. However, there was no significant difference in the level of hs-CRP among the three therapies (P = 0.06, SMD = -2.80, 95%CI = -5.67 to 0.07; P = 0.10, SMD = -0.42, 95%CI = − 0.92 to 0.08). In addition, α-lipoic acid combined with valsartan markedly increased the level of SOD (P = 0.03, SMD = 1.24, 95%CI = 0.32 to 1.03; P = 0.0002, SMD = 0.68, 95%CI = 0.32 to 1.03) and T-AOC (P < 0.00001, SMD = 0.89, 95%CI = 0.62 to 1.16; P = 0.02, SMD = 0.58, 95%CI = 0.10 to1.07), and reduced the level of MDA(P = 0.0002, SMD = -1.99, 95%CI = -3.02 to − 0.96; P = 0.0001, SMD = -0.69, 95%CI = -1.04 to − 0.34). Conclusions α-lipoic acid combined with valsartan could significantly reduce the level of urinary albumin and oxidative stress, increase antioxidant capacity and alleviate renal function damage in patients with DN, and this will provide a reference for the selection of treatment drugs for DN.


2020 ◽  
Vol 10 ◽  
Author(s):  
Dhrubajyoti Sarkar ◽  
Sekhar Kumar Bose ◽  
Tania Chakraborty ◽  
Souvik Roy

Background: Diabetic nephropathy (DN), a microvascular complication of diabetes has been a significant health issue globally. However, theaflavin enriched black tea extract (BTE-TF) could restrain DN. Objective: The main objective of this exploration was to elucidate the effect of BTE-TF on DN, though the underlying mechanism remains unclear and requires further investigation. Method: The tea leaves were fermented to get black tea extract. Total phenolic content and HPLC were carried out to determine the phenolic content and theaflavin in the extract. Streptozotocin induced diabetic rats were treated with 100, 200, and 400 mg/kg/day BTE-TF extract for 12 weeks. Biochemical parameters like blood glucose, creatinine, blood urea nitrogen (BUN), triglyceride and antioxidant parameters of kidney tissue were measured. Histology, immunohistochemistry and TUNEL assay were performed to observe the effect of the extract with comparison to the standard drug (Metformin 200mg/kg/day). Result: Treated animals exhibited reduced blood glucose levels, blood urea nitrogen (BUN), creatinine, and serum triglycerides. Further, BTE-TF restored the histological alterations in the kidney. Chronic hyperglycaemia resulted in a significant increase in oxidative stress and pro-inflammatory cytokines of NF-kβ pathway. BTE-TF attenuated oxidative stress (p<0.01), inflammation (p<0.05) and apoptosis (p<0.05). Conclusion: This study suggests that BTE-TF exerts a protective role against diabetes-induced renal injury by ameliorating oxidative stress, inflammation, and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document