scholarly journals Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-κB pathways and COX-2 in LPS-activated RAW 264.7 cells

2017 ◽  
Vol 202 ◽  
pp. 127-137 ◽  
Author(s):  
Ruberlei Godinho de Oliveira ◽  
Geovane Roberto de Campos Castilho ◽  
André Luiz da Cunha ◽  
Fábio Miyajima ◽  
Domingos Tabajara de Oliveira Martins
2012 ◽  
Vol 40 (04) ◽  
pp. 813-831 ◽  
Author(s):  
You-Chang Oh ◽  
Won-Kyung Cho ◽  
Yun Hee Jeong ◽  
Ga Young Im ◽  
Min Cheol Yang ◽  
...  

Sipjeondaebotang (SJ) has been used as a traditional drug in east-Asian countries. In this study, to provide insight into the biological effects of SJ and SJ fermented by Lactobacillus, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in macrophages. The investigation was focused on whether SJ and fermented SJ could inhibit the production of pro-inflammatory mediators such as prostaglandin (PG) E2 and nitric oxide (NO) as well as the expressions of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB in LPS-stimulated RAW 264.7 cells. We found that SJ modestly inhibited LPS-induced PGE2, NO and TNF-α production as well as the expressions of COX-2 and iNOS. Interestingly, fermentation significantly increased its inhibitory effect on the expression of all pro-inflammatory mediators. Furthermore, fermented SJ exhibited increased inhibition of p38 MAPK and c-Jun NH2-terminal kinase (JNK) MAPK phosphorylation as well as NF-κB p65 translocation by reduced IκBα degradation compared with either untreated controls or unfermented SJ. High performance liquid chromatography (HPLC) analysis showed fermentation by Lactobacillus increases liquiritigenin and cinnamyl alcohol contained in SJ, which are known for their anti-inflammatory activities. Finally, SJ fermented by Lactobacillus exerted potent anti-inflammatory activity by inhibiting MAPK and NF-κB signaling in RAW 264.7 cells.


2021 ◽  
Author(s):  
MA Sunil ◽  
vasudevan Sunitha ◽  
Prasanthkumar Santhakumaran ◽  
Mohind C. Mohan ◽  
Midhun Sebastian Jose ◽  
...  

Abstract Catechin, a flavonol belonging to the flavonoid group of polyphenols is present in many plant foods. The present study was done to evaluate the effect of catechin on various inflammatory mediators using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The effect of catechin on total cyclooxygenase (COX) activity, 5-lipoxygenase (5-LOX), myeloperoxidase, nitrite and inducible nitric oxide synthase (iNOS) level, secretion of tumour necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were assessed in LPS-stimulated RAW 264.7 cells. The expression of COX-2, iNOS, TNF-α, nuclear factor-ĸB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) genes were also investigated. The effect was further analyzed using human PBMCs by assessing the level of TNF-α and IL-10. The study demonstrated that the inflammatory mediators such as COX, 5-LOX, nitrite, iNOS, and TNF-α were significantly inhibited by catechin in a dose-dependent manner whereas IL-10 production was up-regulated in RAW 264.7 cells. Moreover, catechin down-regulated the mRNA level expression of COX-2, iNOS, TNF-α, NF-κB and p38 MAPK. The current study ratifies the beneficial effect of catechin as a dietary component in plant foods to provide protection against inflammatory diseases.


2014 ◽  
Vol 42 (04) ◽  
pp. 891-904 ◽  
Author(s):  
Mi Young Song ◽  
Hyo Won Jung ◽  
Seok Yong Kang ◽  
Kyung-Ho Kim ◽  
Yong-Ki Park

The root bark of Lycium barbarum (Lycii radicis cortex, LRC) is used as a cooling agent for fever and night sweats in East Asian traditional medicine. The inhibitory effect of LRC water extract on inflammation is unknown. In this study, the anti-inflammatory effect of LRC was investigated in lipopolysaccharide (LPS)-stimulated mouse macrophage, RAW 264.7 cells. LRC extract significantly decreased the LPS-induced production of inflammatory mediators, nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory cytokines, interleukin (IL)-1β and IL-6 in the cells. In addition, LRC extract inhibited the LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 mRNA and protein, and inflammatory cytokines mRNA in the cells. The action mechanism of LRC underlies the blocking of LPS-mediated p38 and Jun N-terminal kinase (JNK), mitogen-activated protein kinases (MAPKs), and the nuclear factor (NF)-κB signaling pathway. These results indicate that LRC extract inhibits the inflammatory response in activated macrophages by down-regulating the transcription levels of inflammatory mediators and blocking the MAPKs and NF-κB pathway.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 269 ◽  
Author(s):  
Su Cheol Baek ◽  
Dahae Lee ◽  
Mun Seok Jo ◽  
Kwang Ho Lee ◽  
Yong Hoon Lee ◽  
...  

Hippophae rhamnoides L. (Elaeagnaceae; commonly known as “sea buckthorn” and “vitamin tree”), is a spiny deciduous shrub whose fruit is used in foods and traditional medicines. The H. rhamnoides fruit (berry) is rich in vitamin C, with a level exceeding that found in lemons and oranges. H. rhamnoides berries are usually washed and pressed to create pomace and juice. Today, the powder of the aqueous extract of H. rhamnoides berries are sold as a functional food in many countries. As part of our ongoing effort to identify bioactive constituents from natural resources, we aimed to isolate and identify those from the fruits of H. rhamnoides. Phytochemical analysis of the extract of H. rhamnoides fruits led to the isolation and identification of six compounds, namely, a citric acid derivative (1), a phenolic (2), flavonoids (3 and 4), and megastigmane compounds (5 and 6). Treatment with compounds 1–6 did not have any impact on the cell viability of RAW 264.7 mouse macrophages. However, pretreatment with these compounds suppressed lipopolysaccharide (LPS)-induced NO production in RAW 264.7 mouse macrophages in a concentration-dependent manner. Among the isolated compounds, compound 1 was identified as the most active, with an IC50 of 39.76 ± 0.16 μM. This value was comparable to that of the NG-methyl-L-arginine acetate salt, a nitric oxide synthase inhibitor with an IC50 of 28.48 ± 0.05 μM. Western blot analysis demonstrated that compound 1 inhibited the LPS-induced expression of IKKα/β (IκB kinase alpha/beta), I-κBα (inhibitor of kappa B alpha), nuclear factor kappa-B (NF-κB) p65, iNOS (inducible nitric oxide synthase), and COX-2 (cyclooxygenase-2) in RAW 264.7 cells. Furthermore, LPS-stimulated cytokine production was detected using a sandwich enzyme-linked immunosorbent assay. Compound 1 decreased interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) production in LPS-stimulated RAW 264.7 cells. In summary, the mechanism of action of 1 included the suppression of LPS-induced NO production in RAW 264.7 cells by inhibiting IKKα/β, I-κBα, NF-κB p65, iNOS, and COX-2, and the activities of IL-6 and TNF-α.


2020 ◽  
Vol 48 (05) ◽  
pp. 1121-1140
Author(s):  
Hien T.T. Ngo ◽  
Eunson Hwang ◽  
Hyungoo Kang ◽  
Bom Park ◽  
Seul A. Seo ◽  
...  

Achillea millefolium L. (AM) is an aromatic herb with a variety of pharmacological properties, such as anti-inflammatory and anti-allergic activities. However, AM’s effects on atopic dermatitis (AD) have not been investigated. This study evaluates the anti-AD activity of 50% ethanol-extracted AM in murine macrophage Raw 264.7 cells, in tumor necrosis factor-alpha/interferon-gamma (TNF-[Formula: see text]/IFN-[Formula: see text])-stimulated human immortal keratinocyte HaCaT cells in vitro, and in Biostir-AD-treated NC/Nga mice in vivo. The results showed that AM significantly downregulated expression of pro-inflammatory cytokines, such as INOS, COX-2, and interleukin (IL)-6 in lipopolysaccharide (LPS)-treated Raw 264.7 cells. The mRNA expressions of INOS, COX-2, and IL-6 decreased by 76.1%, 69.3%, and 31.8%, respectively. Overexpression of chemokines, such as activation-regulated chemokine and macrophage-derived chemokine, regulated on activation of normal T-cell expressed and secreted, and IL-8 was inhibited by 70.01%, 52.91%, 73.53%, and 18.93%, respectively, in TNF-[Formula: see text]/IFN-[Formula: see text]-stimulated HaCaT cells by downregulating the mitogen-activated protein kinase, I[Formula: see text]B[Formula: see text], and the signal transducer and activator of transcription 1 signaling pathways. AD-like symptoms, such as elevated serum immunoglobin E levels, epidermal thickening, high dermatitis severity score, transepidermal water loss, and reduced skin hydration, were relieved by the dietary administration of AM in Biostir-AD-treated NC/Nga mice. In addition, filaggrin expression increased significantly in AM-treated groups. These results suggest that AM could be a useful candidate for AD treatment.


Sign in / Sign up

Export Citation Format

Share Document