Ethanol supernatant extracts of Gynura procumbens could treat nanodiethylnitrosamine-induced mouse liver cancer by interfering with inflammatory factors for the tumor microenvironment

2021 ◽  
pp. 114917
Author(s):  
Ting Zhang ◽  
Hong-Wei Gu ◽  
Jin-Xing Gao ◽  
Yu-Sang Li ◽  
He-Bin Tang
Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3645
Author(s):  
Isabel Theresa Schobert ◽  
Lynn Jeanette Savic

With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.


2021 ◽  
Vol 20 ◽  
pp. 153303382199528
Author(s):  
Qing Lv ◽  
Qinghua Xia ◽  
Anshu Li ◽  
Zhiyong Wang

This study was performed to investigate the role of interleukin-1 receptor accessory protein (IL1RAP) in stomach carcinoma in vitro and in vivo, determine whether IL1RAP knockdown could regulate the development of stomach carcinoma, and elucidate the relationship between IL1RAP knockdown and inflammation by tumor microenvironment-related inflammatory factors in stomach carcinoma. We first used TCGA and GEPIA systems to predict the potential function of IL1RAP. Second, western blot and RT-PCR were used to analyze the expression, or mRNA level, of IL1RAP at different tissue or cell lines. Third, the occurrence and development of stomach carcinoma in vitro and in vivo were observed by using IL1RAP knockdown lentivirus. Finally, the inflammation of stomach carcinoma in vitro and in vivo was observed. Results show that in GEPIA and TCGA systems, IL1RAP expression in STAD tumor tissue was higher than normal, and high expression of IL1RAP in STAD patients had a worse prognostic outcome. Besides, GSEA shown IL1RAP was negative correlation of apopopsis, TLR4 and NF-κB signaling pathway. We also predicted that IL1RAP may related to IL-1 s, IL-33, and IL-36 s in STAD. The IL1RAP expression and mRNA level in tumor, or MGC803, cells were increased. Furthermore, IL1RAP knockdown by lentivirus could inhibit stomach carcinoma development in vitro and in vivo through weakening tumor cell proliferation, migration, invasion, therefore reducing tumor volume, weight, and biomarker levels, and increasing apoptotic level. Finally, we found IL1RAP knockdown could increase inflammation of tumor microenvironment-related inflammatory factors of stomach carcinoma, in vitro and in vivo. Our study demonstrates that IL1RAP is possibly able to regulate inflammation and apoptosis in stomach carcinoma. Furthermore, TLR4, NF-κB, IL-1 s, IL-33, and IL-36 s maybe the downstream target factor of IL1RAP in inflammation. These results may provide a new strategy for stomach carcinoma development by regulating inflammation.


2021 ◽  
pp. 2100048
Author(s):  
Da‐Liang Ou ◽  
S.‐Ja Tseng ◽  
Ivan M. Kempson ◽  
Chia‐Lang Hsu ◽  
Pan‐Chyr Yang ◽  
...  

2022 ◽  
Author(s):  
Yang Bu ◽  
Kejun Liu ◽  
Yiming Niu ◽  
Ji Hao ◽  
Lei Cui ◽  
...  

Abstract Background: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in the metabolic and immunological aspects of tumors. In hepatocellular carcinoma (HCC), the alteration of tumor microenvironment influences recurrence and metastasis. We extracted G6PD-related data from public databases of HCC tissues and used a bioinformatics approach to explore the correlation between G6PD expression and clinicopathological features and prognosis of immune cell infiltration in HCC.Methods: We extract G6PD expression information from TCGA and GEO databases in liver cancer tissues and normal tissues, validated by immunohistochemistry, and the correlation between G6PD expression and clinical features is analyzed, and the clinical significance of G6PD in liver cancer is assessed by Kaplan-Meier, Cox regression and prognostic line graph models. Functional enrichment analysis is performed by protein-protein interaction (PPI) network, GO/KEGG, GSEA and G6PD-associated differentially expressed genes (DEGs). TIMER and ssGSEA packages are used to assess the correlation between expression and the level of immune cell infiltration.Results: Our results show that G6PD expression is significantly upregulated in hepatocellular carcinoma tissues (P < 0.001). G6PD expression is associated with histological grade, pathological stage, T-stage, vascular infiltration and AFP level (P < 0.05); HCC patients in the low G6PD expression group had longer overall survival and better prognosis compared with the high G6PD expression group (P < 0.05). The level of G6PD expression also affects the levels of macrophages, unactivated dendritic cells, B cells, and follicular helper T cells in the tumor microenvironment.Conclusion: High expression of G6PD is a potential biomarker for poor prognosis of hepatocellular carcinoma, and G6PD may be a target for immunotherapy of HCC.


2021 ◽  
Author(s):  
Yunji Xu ◽  
Guo Huang ◽  
Wen bing Li

Abstract Background: The prognosis of hepatocellular carcinoma (HCC) is closely related to immunity and inflammation, but the value of using immune and inflammation-related genes as predicting the prognosis of HCC requires further research.Methods: The Hepatocellular Carcinomar mRNA data was downloaded in the TCGA and ICGC database. The R package "limma" was used to analyze the differential expression of genes (DEGs) irelated to immune and inflammatory .Univariate Cox analysis screen for immune and inflammation related genes with prognostic value, then construction and verification of the prognostic model in Hepatocellular Carcinomar. The correlation between risk score with tumor immune immersion and immune cell function was assessed through tumor microensure and immune response analysis. NCI-60 cell line to explore the relationship between prognostic gene expression and drug sensitivity.Results: We evaluated 8 immune and inflammatory-related genes to build a prognostic risk prediction model, riskscore is an independent risk factor affecting prognosis, closely related to histological grading and clinical staging. The immune of adCs, macrophages, Tfh cells, Treg cells and Th1 cells higher in the tumor microenvironment leads to poor prognosis of liver cancer. Using data from the NCI-60 cell line, DNASE1L3 high expression may increased resistance of liver cancer cells to bovine platinum, solafinil and bovine platinum. The expression of SLC7A11 can increase the sensitivity of liver cancer to arsenic trioxide (ATO). Simultaneously constructing models and tumor microenvironment and drug resistance may provide effective and safe strategies for HCC chemotherapy and immunotherapy.Conclusion:Our study screened eight immune and inflammation-related genes play an important role in HCC tumor immunity and can be used to predict the prognosis of HCC.


2020 ◽  
Vol 21 (24) ◽  
pp. 9751
Author(s):  
Hung-Yu Lin ◽  
Chia-Jung Li ◽  
Ya-Ling Yang ◽  
Ying-Hsien Huang ◽  
Ya-Tze Hsiau ◽  
...  

The lysyl oxidase (LOX) family members are secreted copper-dependent amine oxidases, comprised of five paralogues: LOX and LOX-like l-4 (LOXL1-4), which are characterized by catalytic activity contributing to the remodeling of the cross-linking of the structural extracellular matrix (ECM). ECM remodeling plays a key role in the angiogenesis surrounding tumors, whereby a corrupt tumor microenvironment (TME) takes shape. Primary liver cancer includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), ranked as the seventh most common cancer globally, with limited therapeutic options for advanced stages. In recent years, a growing body of evidence has revealed the key roles of LOX family members in the pathogenesis of liver cancer and the shaping of TME, indicating their notable potential as therapeutic targets. We herein review the clinical value and novel biological roles of LOX family members in tumor progression and the TME of liver cancers. In addition, we highlight recent insights into their mechanisms and their potential involvement in the development of target therapy for liver cancer.


Author(s):  
Xiantu Ou ◽  
Weibiao Lv

It is universally acknowledged that a large number of immune cells, as well as inflammatory factors, regulatory factors and metabolites, accumulate in the tumor microenvironment to jointly promote tumor escape, development and metastasis. Hypoxia is one of the characteristics in tumor microenvironment and is a common phenomenon in all solid tumors. In tumor hypoxia response, there is a key regulator called HIF-1a, which is a key transcriptional regulatory protein that regulates many critical genes. In this paper, the effects of hypoxia on glucose metabolism of tumor cells, myeloid-derived suppressor cells and T cells in tumor microenvironment were reviewed, and the interaction among the three was also described.


Sign in / Sign up

Export Citation Format

Share Document