Notch radius effect on fracture toughness of ceramics pertinent to grain size

2020 ◽  
Vol 40 (12) ◽  
pp. 4217-4223 ◽  
Author(s):  
Shuangge Yang ◽  
Chunguo Zhang ◽  
Xiancheng Zhang
Alloy Digest ◽  
1952 ◽  
Vol 1 (1) ◽  

Abstract Dowmetal ZK60A is an ageable extrusion alloy for use where high strength magnesium extrusions with good toughness are required. It has small grain size, low notch sensitivity and a relatively high resistance to stress corrosion. This datasheet provides information on composition, physical properties, tensile properties, and compressive, shear, bearing, and bend strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Mg-1. Producer or source: The Dow Chemical Company.


1992 ◽  
Vol 58 (556) ◽  
pp. 2299-2306 ◽  
Author(s):  
Nobuyuki MIYAHARA ◽  
Kohei YAMAISHI ◽  
Yoshiharu MUTOH ◽  
Keizo UEMATSU ◽  
Makoto INOUE

2021 ◽  
Vol 87 (2) ◽  
pp. 56-64
Author(s):  
G. Pluvinage

Different stress distributions for an elastic behavior are presented as analytical expressions for an ideal crack, a sharp notch and a blunt notch. The elastic plastic distribution at a blunt notch tip is analyzed. The concept of the notch stress intensity factor is deduced from the definition of the effective stress and the effective distance. The impacts of the notch radius and constraint on the critical notch stress intensity factor are presented. The paper ends with the presentation of the crack driving force Jρ for a notch in the elastic case and the impact of the notch radius on the notch fracture toughness Jρ,c. The notch fracture toughness Jρ,c is a measure of the fracture resistance which increases linearly with the notch radius due to the plastic work in the notch plastic zone. If this notch plastic zone does not invade totally the ligament, the notch fracture toughness Jρ,c is constant. This occurs when the notch radius is less than a critical one and there is no need to use the cracked specimen to measure a lower bound of the fracture resistance.


2016 ◽  
Vol 849 ◽  
pp. 549-556
Author(s):  
Pin Pin Hu ◽  
Qi Dong Gai ◽  
Qing Li ◽  
Xin Tang

The effect of Microcast-X fine grain casting on the microstructure and mechnical property K492M alloy at 760°C of was investigated. The results indicated that Microcast-X fine grain casting decreased grain size and dendrite space of γ′ phase and γ/γ′ eutectic. In addition, the element segregation decreased significantly compared to conventional casting technique. Also, the size and distribution of MC carbide were improved. By Microcast-X fine grain casting, the tensile strength increased from 934MPa of conventional casting alloy to 1089MPa and the elongation increased from 1.9% to 5.7%. In addition, the stress-rupture life increased from 28.8h of conventional casting alloy to 72.5h. And the fracture mechanism for the alloys by Microcast-X fine grain casting is trans-granular fracture toughness.


2021 ◽  
Vol 2021 (3) ◽  
pp. 77-85
Author(s):  
K. M. Borysovska ◽  
◽  
N. M. Marchenko ◽  
Yu. M. Podrezov ◽  
S. O. Firstov ◽  
...  

The (DD) method was used to model the formation of the plastic zone of the top of the cracks in polycrystalline molybdenum. Special attention was paid to take into account the interaction of dislocations in the plastic zone with grain boundaries. Structural sensitivity of fracture toughness was analyzed under brittle-ductile condition. Simulations were performed for a range of grain sizes from 400 to 100 μm, at which a sudden increase in fracture toughness with a decrease of grain size was experimentally shown. We calculated the value of K1c taking into account the shielding action of dislocations. The position of all dislocations in the plastic zone at fracture moment was calculated. Based on these data, we obtained the dependences of dislocation density on the distance from the crack tip thereby confirming significant influence of the grain boundaries on plastic zone formation. At large grain sizes, when the plastic zone does not touch the boundary, the distribution of dislocations remained unchanged. As grains reduce their size to size of the plastic zone, they start formating a dislocation pile – up near the boundaries. Dislocations on plastic zone move slightly toward the crack tip, but the density of dislocations in the middle of the grain remains unchanged, and fracture toughness remains almost unchanged. Further reduction of the grain size leads to the Frank-Reed source activation on the grain boundary Forming dislocation pile-up of the neighbor grains. Its stress concentration acts on dislocations of the first grain and causes redistribution of plastic zone dislocations. If the reduction in grain size is not enough to form a strong pile-up, density of dislocations on plastic zone increases slightly and crack resistance increases a few percent. Further reduction of grains promotes strong pile-up, dislocations move to crack tip, and its density on plastic zone increases. Crack is shielded and fracture toughness increases sharply. The calculation showed that the fracture toughness jump is observed at grain sizes of 100—150 μm, in good agreement with the experiment. Keywords: dislocation dynamics simulation, molybdenum, fracture toughness, grain size, plastic zone, brittle-ductile transition.


2021 ◽  
Author(s):  
Yuelong Wang ◽  
Xingyu Li ◽  
Haoyang Wu ◽  
Baorui Jia ◽  
Deyin Zhang ◽  
...  

Abstract Si3N4-based ceramic (Si3N4-5wt%Y2O3-3wt%MgO) was obtained from carbothermal-reduction-derived powder combined with gas pressure sintering. The phase, microstructure, thermal conductivity and mechanical properties of Si3N4 ceramics were comprehensively analyzed. Dense Si3N4 ceramic with uniform grain size was obtained after sintering at 1900°C for 7 h under a N2 pressure of 1.2 MPa. The secondary phase consisted of Y4Si2O7N2 and Y2Si3O3N4 was found to gather around triangular grain boundaries. The thermal conductivity, flexural strength, hardness and fracture toughness of the Si3N4 ceramics were 95.7 W·m-1·k-1, 715 MPa, 17.2 GPa and 7.2 MPa·m1/2, respectively. The results were compared with product derived from commercial powder, the improvement of thermal conductivity (~8.3%) and fracture toughness (~4.3%) demonstrating the superiority of Si3N4 ceramics prepared from carbothermal-reduction-derived powder.


2012 ◽  
pp. 209-261

Abstract This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which they can be optimized. It also discusses the effect of metalworking and heat treatment, the influence of loading and operating conditions, and factors such as corrosion damage that can accelerate crack growth rates.


2014 ◽  
Vol 89 ◽  
pp. 88-93
Author(s):  
Marek Boniecki ◽  
Zdzislaw Librant ◽  
Władysław Wesołowski ◽  
Magdalena Gizowska ◽  
Marcin Osuchowski ◽  
...  

Fracture toughness KIc and four-point bending strength σc at high temperature (up to 1500 °C) of Y2O3 ceramics of various grain size were measured. The ceramics were prepared by pressureless air sintering and next hot isostatic pressing of high purity (99.99%) Y2O3 powder. Relative density of about 99 % was achieved. Photos of microstructures revealed small pores distributed mainly inside grains. For smallest grain size (2 - 9 μm) ceramics KIc and σc are almost constant from 20 ° to 1200 °C and next they decrease. For biggest grain size (about 44 μm) they increase up to 800 °C and next they keep constant up to 1200 °C. The micrographs analyses of fracture surfaces indicated that transgranular mode of fracture at room temperature changes to almost intergranular at higher temperatures.


Sign in / Sign up

Export Citation Format

Share Document