Magnesium lithospermate B improves metabolic changes in high-fat diet-fed rats with metabolic syndrome

2015 ◽  
Vol 14 ◽  
pp. 163-173 ◽  
Author(s):  
Ying-Jie Chen ◽  
Yuan-Hao Lo ◽  
Yi-Ting Chen ◽  
Nai-Wei Lai ◽  
Nan-Hei Lin ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 983 ◽  
Author(s):  
Sheng-Kuo Hsieh ◽  
Nan-Hei Lin ◽  
Ying-Jie Chen ◽  
Maw-Rong Lee ◽  
Wen-Ying Chen ◽  
...  

Excessive food consumption and insufficient exercise lead to the prevalence of metabolic syndrome in modern life, which consequently increases the risk of many chronic diseases. Magnesium lithospermate B (MLB) from Danshen has been demonstrated to improve metabolic changes in high-fat diet–fed rats with metabolic syndrome. In this study, Mg2+ in MLB was successfully replaced with Zn2+ to form zinc lithospermate B (ZLB) complex. MLB (10 mg/kg /day) and ZLB of various concentrations (1, 2.5, 5, and 10 mg/kg/day) were prepared and examined for their therapeutic effects on metabolic syndrome induced in rats fed with a high-fat diet. The results showed that both MLB and ZLB were able to recover or alleviate the abnormal physiological states of high-fat diet–fed rats including weight gain, epididymal fat accumulation, fatty liver, retarded blood lipid and glucose metabolism putatively caused by insulin resistance, and elevated levels of proinflammatory cytokine, leptin, and oxidative stress. In an overall view of the animal study, the effectiveness of ZLB supplementation seemed to be better than that of MLB supplementation for the recovery of high-fat-fed rats from metabolic syndrome.


Author(s):  
Dan-Dan Wang ◽  
Fang Wu ◽  
Ling-Yu Zhang ◽  
Ying-Cai Zhao ◽  
Cheng-Cheng Wang ◽  
...  

2021 ◽  
pp. 2100417
Author(s):  
Yangmian Yuan ◽  
Chengyu Liu ◽  
Xingrui Chen ◽  
Yuyan Sun ◽  
Mingrui Xiong ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 6142
Author(s):  
Michael Ezrokhi ◽  
Yahong Zhang ◽  
Shuqin Luo ◽  
Anthony H. Cincotta

The treatment of type 2 diabetes patients with bromocriptine-QR, a unique, quick release micronized formulation of bromocriptine, improves glycemic control and reduces adverse cardiovascular events. While the improvement of glycemic control is largely the result of improved postprandial hepatic glucose metabolism and insulin action, the mechanisms underlying the drug’s cardioprotective effects are less well defined. Bromocriptine is a sympatholytic dopamine agonist and reduces the elevated sympathetic tone, characteristic of metabolic syndrome and type 2 diabetes, which potentiates elevations of vascular oxidative/nitrosative stress, known to precipitate cardiovascular disease. Therefore, this study investigated the impact of bromocriptine treatment upon biomarkers of vascular oxidative/nitrosative stress (including the pro-oxidative/nitrosative stress enzymes of NADPH oxidase 4, inducible nitric oxide (iNOS), uncoupled endothelial nitric oxide synthase (eNOS), the pro-inflammatory/pro-oxidative marker GTP cyclohydrolase 1 (GTPCH 1), and the pro-vascular health enzyme, soluble guanylate cyclase (sGC) as well as the plasma level of thiobarbituric acid reactive substances (TBARS), a circulating marker of systemic oxidative stress), in hypertensive SHR rats held on a high fat diet to induce metabolic syndrome. Inasmuch as the central nervous system (CNS) dopaminergic activities both regulate and are regulated by CNS circadian pacemaker circuitry, this study also investigated the time-of-day-dependent effects of bromocriptine treatment (10 mg/kg/day at either 13 or 19 h after the onset of light (at the natural waking time or late during the activity period, respectively) among animals held on 14 h daily photoperiods for 16 days upon such vascular biomarkers of vascular redox state, several metabolic syndrome parameters, and mediobasal hypothalamic (MBH) mRNA expression levels of neuropeptides neuropeptide Y (NPY) and agouti-related protein (AgRP) which regulate the peripheral fuel metabolism and of mRNA expression of other MBH glial and neuronal cell genes that support such metabolism regulating neurons in this model system. Such bromocriptine treatment at ZT 13 improved (reduced) biomarkers of vascular oxidative/nitrosative stress including plasma TBARS level, aortic NADPH oxidase 4, iNOS and GTPCH 1 levels, and improved other markers of coupled eNOS function, including increased sGC protein level, relative to controls. However, bromocriptine treatment at ZT 19 produced no improvement in either coupled eNOS function or sGC protein level. Moreover, such ZT 13 bromocriptine treatment reduced several metabolic syndrome parameters including fasting insulin and leptin levels, as well as elevated systolic and diastolic blood pressure, insulin resistance, body fat store levels and liver fat content, however, such effects of ZT 19 bromocriptine treatment were largely absent versus control. Finally, ZT 13 bromocriptine treatment reduced MBH NPY and AgRP mRNA levels and mRNA levels of several MBH glial cell/neuronal genes that code for neuronal support/plasticity proteins (suggesting a shift in neuronal structure/function to a new metabolic control state) while ZT 19 treatment reduced only AgRP, not NPY, and was with very little effect on such MBH glial cell genes expression. These findings indicate that circadian-timed bromocriptine administration at the natural circadian peak of CNS dopaminergic activity (that is diminished in insulin resistant states), but not outside this daily time window when such CNS dopaminergic activity is naturally low, produces widespread improvements in biomarkers of vascular oxidative stress that are associated with the amelioration of metabolic syndrome and reductions in MBH neuropeptides and gene expressions known to facilitate metabolic syndrome. These results of such circadian-timed bromocriptine treatment upon vascular pathology provide potential mechanisms for the observed marked reductions in adverse cardiovascular events with circadian-timed bromocriptine-QR therapy (similarly timed to the onset of daily waking as in this study) of type 2 diabetes subjects and warrant further investigations into related mechanisms and the potential application of such intervention to prediabetes and metabolic syndrome patients as well.


2021 ◽  
pp. 174257
Author(s):  
Omnia A. Nour ◽  
Hamdy A. Ghoniem ◽  
Manar A. Nader ◽  
Ghada M. Suddek

2021 ◽  
Vol 10 (3) ◽  
pp. 345-355
Author(s):  
Sha Yan ◽  
Kai Wang ◽  
Xiaoying Wang ◽  
Aiqun Ou ◽  
Feiran Wang ◽  
...  

Life Sciences ◽  
2014 ◽  
Vol 114 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Naomi Osakabe ◽  
Junpei Hoshi ◽  
Naoto Kudo ◽  
Masahiro Shibata

Sign in / Sign up

Export Citation Format

Share Document