Seaweed sulphated polysaccharide as an inhibitor of calcium oxalate renal stone formation

2016 ◽  
Vol 27 ◽  
pp. 685-694 ◽  
Author(s):  
Poonam Bhadja ◽  
Jignesh Lunagariya ◽  
Jian-Ming Ouyang
1994 ◽  
Vol 86 (3) ◽  
pp. 239-243 ◽  
Author(s):  
Bruno Baggio ◽  
Giovanni Gambaro ◽  
Francesco Marchini ◽  
Massimo Vincenti ◽  
Giulio Ceolotto ◽  
...  

1. Anomalous transmembrane anion transport has been observed in erythrocytes of patients with idiopathic calcium nephrolithiasis. 2. To verify whether cation transport is also abnormal, we investigated the frusemide-sensitive Na+ efflux from Na+-loaded erythrocytes and the natriuretic response to acute intravenous frusemide administration in calcium oxalate renal stone formers. 3. Frusemide administration induced a statistically significant smaller increase in the fractional excretion of Na+ in patients than in control subjects. Abnormal kinetic properties of erythrocyte Na+-K+-2Cl− co-transport were observed in approximately 60% of stone formers. The Km for Na+ of Na+-K+-2Cl− co-transport correlated with urinary Ca2+ excretion. 4. The abnormal kinetic properties of Na+-K+-2Cl− co-transport may be relevant for stone formation, hampering renal Ca2+ reabsorption in the distal nephron and determining critical physicochemical conditions for calcium/oxalate crystallization.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1069
Author(s):  
Allen L. Rodgers ◽  
Roswitha Siener

In the pathogenesis of hypercalciuria and hyperoxaluria, n-6 polyunsaturated fatty acids (PUFAs) have been implicated by virtue of their metabolic links with arachidonic acid (AA) and prostaglandin PGE2. Studies have also shown that n-3 PUFAs, particularly those in fish oil—eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—can serve as competitive substrates for AA in the n-6 series and can be incorporated into cell membrane phospholipids in the latter’s place, thereby reducing urinary excretions of calcium and oxalate. The present review interrogates several different types of study which address the question of the potential roles played by dietary PUFAs in modulating stone formation. Included among these are human trials that have investigated the effects of dietary PUFA interventions. We identified 16 such trials. Besides fish oil (EPA+DHA), other supplements such as evening primrose oil containing n-6 FAs linoleic acid (LA) and γ-linolenic acid (GLA) were tested. Urinary excretion of calcium or oxalate or both decreased in most trials. However, these decreases were most prominent in the fish oil trials. We recommend the administration of fish oil containing EPA and DHA in the management of calcium oxalate urolithiasis.


2006 ◽  
Vol 40 (3) ◽  
pp. 187-191 ◽  
Author(s):  
Bardaoui Mourad ◽  
Neffati Fadwa ◽  
Trimeche Mounir ◽  
Elhani Abdelhamid ◽  
Najjar Mohamed Fadhel ◽  
...  

1971 ◽  
Vol 17 (10) ◽  
pp. 971-982 ◽  
Author(s):  
J Stanton King

Abstract Current theories of renal stone formation are reviewed, together with the resulting proposals for treatment, with emphasis on the idiopathic, recurrent formation of calcium oxalate stones. Factors influencing the initiation and development of stones are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Kanu Priya Aggarwal ◽  
Shifa Narula ◽  
Monica Kakkar ◽  
Chanderdeep Tandon

Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person’s ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation.


Sign in / Sign up

Export Citation Format

Share Document