Study on aerodynamic excitation of radial turbine blades with vaneless volute at low excitation order

2021 ◽  
Vol 107 ◽  
pp. 103408
Author(s):  
Lei Pan ◽  
Mingyang Yang ◽  
Shota Murae ◽  
Wataru Sato ◽  
Tomoki Kawakubo ◽  
...  
Author(s):  
Stephan Netzhammer ◽  
Damian M. Vogt ◽  
Stephan Kraetschmer ◽  
Johannes Leweux ◽  
Andreas Koengeter

Turbocharger turbine blades are subjected to resonant excitation that can lead to High Cycle Fatigue (HCF). In vaneless turbines the excitation primarily stems from asymmetries in the turbine housing such as the volute and the tongue. Given the nature of such asymmetries, the excitation is of a Low Engine Order (LEO) type. The present study deals with the effect of radial turbine housing design on LEO resonant excitation of turbine blades. The study focuses on two geometrical key design parameters of a twin-scroll turbine housing for a radial turbine which is the rotor-tongue distance and the circumferential angle between both tongues. The generalized force approach is used to identify the critical blade surface regions in order to understand the excitation mechanism of each specific design and to assess the differences of design variants with respect to the baseline design. The presented approach is highly practicable, because it is less expensive than full FSI-simulations. This approach is validated on tip timing test data from full-scale experiments. Correlation to test data shows that the presented approach is capable of capturing the relative trends reliably and hence can efficiently be employed in an industrial design process such as to minimize blade vibration amplitudes. It is shown that a reduction of blade vibration amplitudes by a factor of 10 could be achieved.


Author(s):  
Lei Pan ◽  
Mingyang Yang ◽  
Shouta Murae ◽  
Wataru Sato ◽  
Naoto Shimohara ◽  
...  

As vehicle turbochargers are developed toward higher performance and lower turbo lag, high cycle fatigue (HCF) of radial turbine blades is becoming increasingly common which greatly threatens the reliability of turbochargers. Tip leakage vortex is one of potential sources of blade excitation and it’s profoundly influenced by blade tip clearance. This paper studies the influence of tip clearance distribution on blade excitation of a vaneless radial turbine via experimentally validated one-way fluid-structure interaction (FSI) numerical method. The results suggest that blade vibration response is significantly influenced by tip clearance distribution in the meridional direction. Generalized energy method is proposed to determine the key factors for blade excitation. The results manifest that complex distributions of harmonic pressure amplitude on the blade dominate blade vibration response. Detailed flow field analysis is carried out to further investigate the mechanism of blade excitation. The results show that distributions of harmonic pressure amplitude on pressure surface (PS) and suction surface (SS) are both dominated by tip leakage vortex, whereas the roles that tip leakage vortex plays are quite different. Specifically, tip leakage vortex influences harmonic pressure amplitude on SS directly because of short distance between vortex core and SS, whereas it influences harmonic pressure amplitude on PS indirectly by interfering the evolution of passage vortex. This research can guide new designs for durable vaneless radial turbines without sacrificing aerodynamic performance.


Author(s):  
J. T. Neil ◽  
K. W. French ◽  
C. L. Quackenbush ◽  
J. T. Smith

This paper presents a status report on the injection molding of sinterable silicon nitride at GTE Laboratories. The effort involves fabrication of single axial turbine blades and monolithic radial turbine rotors. The injection molding process is reviewed and the fabrication of the turbine components discussed. Oxidation resistance and strength results of current injection molded sintered silicon nitride as well as dimensional checks on sintered turbine blades demonstrate that this material is a viable candidate for high temperature structural applications.


Author(s):  
E. F. Koch ◽  
E. L. Hall ◽  
S. W. Yang

The plane-front solidified eutectic alloys consisting of aligned tantalum monocarbide fibers in a nickel alloy matrix are currently under consideration for future aircraft and gas turbine blades. The MC fibers provide exceptional strength at high temperatures. In these alloys, the Ni matrix is strengthened by the precipitation of the coherent γ' phase (ordered L12 structure, nominally Ni3Al). The mechanical strength of these materials can be sensitively affected by overall alloy composition, and these strength variations can be due to several factors, including changes in solid solution strength of the γ matrix, changes in they γ' size or morphology, changes in the γ-γ' lattice mismatch or interfacial energy, or changes in the MC morphology, volume fraction, thermal stability, and stoichiometry. In order to differentiate between these various mechanisms, it is necessary to determine the partitioning of elemental additions between the γ,γ', and MC phases. This paper describes the results of such a study using energy dispersive X-ray spectroscopy in the analytical electron microscope.


2018 ◽  
pp. 214-223
Author(s):  
AM Faria ◽  
MM Pimenta ◽  
JY Saab Jr. ◽  
S Rodriguez

Wind energy expansion is worldwide followed by various limitations, i.e. land availability, the NIMBY (not in my backyard) attitude, interference on birds migration routes and so on. This undeniable expansion is pushing wind farms near populated areas throughout the years, where noise regulation is more stringent. That demands solutions for the wind turbine (WT) industry, in order to produce quieter WT units. Focusing in the subject of airfoil noise prediction, it can help the assessment and design of quieter wind turbine blades. Considering the airfoil noise as a composition of many sound sources, and in light of the fact that the main noise production mechanisms are the airfoil self-noise and the turbulent inflow (TI) noise, this work is concentrated on the latter. TI noise is classified as an interaction noise, produced by the turbulent inflow, incident on the airfoil leading edge (LE). Theoretical and semi-empirical methods for the TI noise prediction are already available, based on Amiet’s broadband noise theory. Analysis of many TI noise prediction methods is provided by this work in the literature review, as well as the turbulence energy spectrum modeling. This is then followed by comparison of the most reliable TI noise methodologies, qualitatively and quantitatively, with the error estimation, compared to the Ffowcs Williams-Hawkings solution for computational aeroacoustics. Basis for integration of airfoil inflow noise prediction into a wind turbine noise prediction code is the final goal of this work.


2009 ◽  
Vol 129 (5) ◽  
pp. 689-695
Author(s):  
Masayuki Minowa ◽  
Shinichi Sumi ◽  
Masayasu Minami ◽  
Kenji Horii

Sign in / Sign up

Export Citation Format

Share Document