Physicochemical properties of hydrothermally treated glutinous rice flour and xanthan gum mixture and its application in gluten-free noodles

2016 ◽  
Vol 186 ◽  
pp. 1-9 ◽  
Author(s):  
Jingwen Cai ◽  
Jie Hong Chiang ◽  
Marilyn Yi Pei Tan ◽  
Lin Kiat Saw ◽  
Yunyun Xu ◽  
...  
2021 ◽  
Author(s):  
Ricardo S. Aleman ◽  
Anita Morris ◽  
Witoon Prinyawiwatkul ◽  
Marvin Moncada ◽  
Joan M. King

Foods ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 159 ◽  
Author(s):  
Lalana Thiranusornkij ◽  
Parichart Thamnarathip ◽  
Achara Chandrachai ◽  
Daris Kuakpetoon ◽  
Sirichai Adisakwattana

Hom Nil (Oryza sativa), a Thai black rice, contains polyphenolic compounds which have antioxidant properties. The objective of this study was to investigate physicochemical properties of Hom Nil rice flour (HN) and its application in gluten free bread by using Hom Mali 105 rice flour (HM) as the reference. The results demonstrated that HN flour had significantly higher average particle sizes (150 ± 0.58 μm), whereas the content of amylose (17.6 ± 0.2%) was lower than HM flour (particle sizes = 140 ± 0.58 μm; amylose content = 21.3 ± 0.6%). Furthermore, HN contained higher total phenolic compounds (TPC) (2.68 ± 0.2 mg GAE/g flour), total anthocyanins (293 ± 30 mg cyanidin-3-glucoside/g flour), and the ferric reducing antioxidant power (FRAP) (73.5 ± 1.5 mM FeSO4/g) than HM flour (TPC = 0.15 mg GAE/g flour and FRAP = 2.24 mM FeSO4/g flour). In thermal properties, the onset temperature (To), the peak temperature (Tp) and the conclusion (Tc) temperature of HN flour were similar to the values of HM flour. However, HN flour had lower enthalpy change (ΔH) than HM flour. The results showed that HN flour had lower swelling power and higher solubility than HM flour at the temperature between 55 °C and 95 °C. In pasting properties, HN flour also showed lower peak, trough and breakdown viscosity than HM flour. In addition, the bread samples prepared by HN flour had higher value of hardness and lower value of cohesiveness than the bread prepared from HM flour. Taken together, the findings suggest that HN flour could be used as an alternative gluten-free ingredient for bread product.


2019 ◽  
Vol 25 (6) ◽  
pp. 515-522
Author(s):  
Numfon Rakkhumkaew ◽  
Yuparat Boonsri ◽  
Arunwadee Sukchum

The aim of this study was to develop gluten-free bread formulations based on small broken riceberry flour, by using different ratios of rice flour and xanthan gum. Small broken riceberry and rice flour could be classified as low in amylose content (15.70 g and 20.50 g/100 g dry matter for small broken riceberry and rice flour, respectively). Additionally, small broken riceberry flour contained a total phenolic and total anthocyanin content approximately 500 times higher than that of rice flour. The addition of increased amounts of small broken riceberry flour and xanthan gum resulted in darker coloured gluten-free bread. However, there was no significant difference regarding moisture and specific volume. The increase of small broken riceberry flour and xanthan gum also led to a significant increase in the firmness of bread crumbs. The sensory evaluation showed differences in flavour, texture and overall liking, since adding small broken riceberry flour tended to make gluten-free bread more favourable. Bread containing rice flour and small broken riceberry flour in the ratio of 30:70 and 1.0% xanthan gum was selected on the basis of the sensory quality. Moreover, such bread also contained high levels of total phenolic and anthocyanin content.


REAKTOR ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 89-95
Author(s):  
Dianika Lestari ◽  
Made Tri Ari Penia Kresnowati ◽  
Afina Rahmani ◽  
Lienda Aliwarga ◽  
Yasid Bindar

Gluten free (GF) bread was made from rice flour and fermented cassava flour. Fermented cassava flour (FERCAF) was produced using a specific design of closed and circulated fermenter, which resulted on a white and neutral aroma flour. However, FERCAF did not have structural component (such as gluten) to provide dough's viscoelasticity and ability to retain gas to hold the volume of bread after baking. Hydrocolloids were added to FERCAF based GF bread to increase water binding of dough. This research aimed to investigate the effect hydrocolloids addition on the characteristics of GF bread made from rice flour and fermented cassava flour (FERCAF). Effect of hydrocolloids to flour ratio (2 %, 3 % and 5 %-wt) and types of hydrocolloid (xanthan gum, agar, and carrageenan) on specific volume of bread, bake loss, bread texture, and microstructure of the bread were investigated. Bread textures were measured using Texture Profile Analyzer (TPA), and microstructure was analysed by SEM. Data experiment showed that addition of hydrocolloids improved GF bread characteristics, specifically increased volume specific, increased porosity, and reduced hardness of GF bread.Keywords: gluten-free bread; cassava; fermented cassava flour; Fercaf; hydrocolloids  


OALib ◽  
2015 ◽  
Vol 02 (06) ◽  
pp. 1-8
Author(s):  
Yanran Qi ◽  
Tingting Cui ◽  
Yuexin Jing ◽  
Changsong Shan ◽  
Zitong Zhao ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1548 ◽  
Author(s):  
Mayara Belorio ◽  
Manuel Gómez

The use of hydrocolloids in gluten-free breads is a strategy to improve their quality and obtain products with acceptable structural and textural properties. Hydration level (HL) optimization is important to maximize the hydrocolloids effects on dough and bread quality. This study evaluated the optimum hydration level (OHL) for gluten-free breads prepared with different starch sources (rice flour or maize starch) and hydroxypropyl methylcellulose (HPMC) in comparison with psyllium husk fibre and xanthan gum. Breads with the same final volume and the corrected hydration (CH) were evaluated. The hydration is a key factor that influences the final characteristics of gluten-free breads. Breads made with HPMC had greater dependence on the HL, especially for preparations with maize starch. Psyllium had similar behaviour to xanthan with respect to specific volume and weight loss. Breads manufactured with maize starch and HPMC had low hardness due to their great specific volume. However, in breads made with rice flour, the combined decreased hydration and similar specific volume generated a harder bread with HPMC than the use of psyllium or xanthan. Breads made with HPMC presented higher specific volume than the other hydrocolloids, however combinations among these hydrocolloids could be evaluated to improve gluten-free breads quality.


Sign in / Sign up

Export Citation Format

Share Document