Nanoencapsulation of cinnamic aldehyde using zein nanofibers by novel needle-less electrospinning: Production, characterization and their application to reduce nitrite in sausages

2021 ◽  
Vol 288 ◽  
pp. 110140 ◽  
Author(s):  
Mehri Karim ◽  
Milad Fathi ◽  
Sabihe Soleimanian-Zad
Keyword(s):  
Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 709
Author(s):  
Ana E. Cartaya ◽  
Halle Lutz ◽  
Sophie Maiocchi ◽  
Morgan Nalesnik ◽  
Edward M. Bahnson

Selective delivery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators to the injured vasculature at the time of vascular surgical intervention has the potential to attenuate oxidative stress and decrease vascular smooth muscle cell (VSMC) hyperproliferation and migration towards the inner vessel wall. To this end, we developed a nanoformulation of cinnamic aldehyde (CA), termed Antioxidant Response Activating nanoParticles (ARAPas), that can be readily loaded into macrophages ex vivo. The CA-ARAPas-macrophage system was used to study the effects of CA on VSMC in culture. CA was encapsulated into a pluronic micelle that was readily loaded into both murine and human macrophages. CA-ARAPas inhibits VSMC proliferation and migration, and activates Nrf2. Macrophage-mediated transfer of CA-ARAPas to VSMC is evident after 12 h, and Nrf2 activation is apparent after 24 h. This is the first report, to the best of our knowledge, of CA encapsulation in pluronic micelles for macrophage-mediated delivery studies. The results of this study highlight the feasibility of CA encapsulation and subsequent macrophage uptake for delivery of cargo into other pertinent cells, such as VSMC.


1975 ◽  
Vol 1 (2) ◽  
pp. 108-111 ◽  
Author(s):  
William F. Schorr
Keyword(s):  

IAWA Journal ◽  
1996 ◽  
Vol 17 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Yuki Kondo ◽  
Tomoyuki Fujii ◽  
Yoshioki Hayashi ◽  
Atsushi Kato

Organic crystals were found in tracheid lumina of some samples of Torreya yunnanensis Chen ' L. K. Fu imported from Yunnan, China. Tracheids with crystals were found in short to long tangential bands along the growth ring boundaries. Because the crystals were rapidly dissolved with ethanol and xylene, cross and tangential sections were mounted in de-ionized water without staining and observed by biological, polarised light, and phase-contrast microscopy. The crystals were sublimated under vacuum during routine sample preparation for conventional SEM and only the peripheral parts remained. With the aid of low vacuum-SEM and modified cryo-SEM procedure, the shape of the crystals was revealed. Some were styloid and large enough to fill tracheid lumina, while others were stacked appearing as slates filling tracheid lumina. X-ray diffraction applied to sections and isolated crystals showed that they were single crystals and orientated along the cell wall. UV spectra on isolated crystals and methanol dissolution of crystals suggested that they were composed of phenolic compounds. Crystals that were recrystallized from methanol were analysed by 1H and l3C nuclear magnetic resonance spectroscopy. These two techniques revealed that the major and minor components were o-methoxy cinnamic acid and o-methoxy cinnamic aldehyde.


2021 ◽  
Vol 17 ◽  
Author(s):  
Bambang Susilo ◽  
Abd. Rohim ◽  
Midia Lestari W. H.

Background: S. cristaefolium is the brown seaweed extracted using the serial technique with different solvents. Methods: S. cristaefolium powder (50 mesh) was extracted with hexane, ethyl acetate, and methanol respectively. The S. cristaefolium powder residue had been dried before being re-extracted with the next different solvents. Three serial extracts were obtained and named as the 1-stage extract, 2-stage extract, and 3-stage extract. Besides, a single-step extract (extraction using only methanol) was also produced to compare with three serial extracts in antibacterial activity tests (against E. coli and S. aureus). The three serial extracts were detected their antibacterial compounds using GC-MS, LC-HRMS, and FT-IR. Results: The 3-stage extract had the highest extraction yield. On S. aureus, the inhibition zone in all extracts was not significantly different. On E.coli, the highest inhibition zone (5.42±0.14 mm) was the 3-stage extract, indeed it is higher than both antibiotic and a single-step extract. Phenol, 9-Tricosene(Z)-, palmitic acid, and oleamide were contained in all extracts. Other antibacterial compound types, both the 1-stage and 2-stage extracts contained 8 types whilst the 3-stage extract contained the most types (12 types). Particularly, hexyl cinnamic aldehyde and betaine were detected only in the 3-stage extract with the dominant area. The carboxylic acid groups were detected in all extracts to confirm the fatty acid structure. Several cinnamic aldehyde groups were detected only in the 3-stage extract. Conclusions: Thus, the extraction technique serially could produce the 3-stage extract which has the strongest antibacterial activity and the richest antibacterial compounds.


1989 ◽  
Vol 35 ◽  
pp. 107-109
Author(s):  
Hajime SAOTOME ◽  
Nobuyoshi ISHIBASHI

1983 ◽  
Vol 16 (12) ◽  
pp. 891-901 ◽  
Author(s):  
Ahmed A. Seif El-Din ◽  
Mohamed A. Korany ◽  
Nabil A. Abdel-salam

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 165-165
Author(s):  
Nadira J Espinoza-Rock ◽  
Andrea O Doblado ◽  
Sebastian E Mejia-Turcios ◽  
Evandro Dias ◽  
Michael Sandes ◽  
...  

Abstract A randomized complete block design was used to determine the effects of 4 concentrations of 4 essential oils (EO) on in vitro ruminal fermentation variables. In vitro fermentation consisted of 0.7 g of high concentrate substrate (86.7% DM) and 50 mL of 2:1 buffer:ruminal fluid inoculum incubated for 24 h for each batch (n = 3; separate days) Treatments were arranged as a 4 × 5 factorial. Factors included 4 EO (eugenol, cinnamic aldehyde, anethole, and garlic oil) at 5 concentrations (0, 10, 75, 200, and 400 mg/L of inoculum). Data were analyzed using the MIXED procedure of SAS with the fixed effects of EO, concentration, and their interaction, and random effect of day (block). Batch was considered the experimental unit. There was an interaction (P < 0.001) for total gas production, where a cubic effect (P ≤ 0.041) was observed for eugenol, cinnamic aldehyde, and anethole, and a quadratic effect (P = 0.001) was observed for garlic oil. No interactions (P > 0.05) were observed for in vitro OM digestibility (IVOMD) or CH4 production. There was an effect of EO (P < 0.001) on IVOMD, where eugenol reduced (P ≤ 0.007) digestibility compared with anethole and garlic oil, which promoted the greatest (P ≤ 0.029) IVOMD. Methane production (mmol/g OM fermented) was affected by EO (P < 0.001), where it was decreased (P ≤ 0.001) by garlic oil compared with all other EO. There was an interaction (P < 0.001) for H2S production (µmol/g OM fermented), where it was linearly decreased (P = 0.003) and linearly increased (P < 0.001) as concentrations of eugenol and garlic oil increased, respectively. These EO had contradictory impacts on in vitro ruminal fermentation, thus combining them could potentially improve multiple aspects of in vitro and in vivo fermentation.


Sign in / Sign up

Export Citation Format

Share Document