Pathogenesis of lipid metabolism disorder in hepatitis C: Polyunsaturated fatty acids counteract lipid alterations induced by the core protein

2011 ◽  
Vol 54 (3) ◽  
pp. 432-438 ◽  
Author(s):  
Hideyuki Miyoshi ◽  
Kyoji Moriya ◽  
Takeya Tsutsumi ◽  
Seiko Shinzawa ◽  
Hajime Fujie ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Jincai Dong ◽  
Wen Gu ◽  
Xingxin Yang ◽  
Linxi Zeng ◽  
Xi Wang ◽  
...  

Objectives:Polygonatum kingianum is a medicinal herb used in various traditional Chinese medicine formulations. The polysaccharide fraction of P. kingianum can reduce insulin resistance and restore the gut microbiota in a rat model of aberrant lipid metabolism by down regulating miR-122. The aim of this study was to further elucidate the effect of P. kingianum on lipid metabolism, and the roles of specific miRNAs and the gut microbiota.Key findings:P. kingianum administration significantly altered the abundance of 29 gut microbes and 27 differentially expressed miRNAs (DEMs). Several aberrantly expressed miRNAs closely related to lipid metabolism were identified, of which some were associated with specific gut microbiota. MiR-484 in particular was identified as the core factor involved in the therapeutic effects of P. kingianum. We hypothesize that the miR-484-Bacteroides/Roseburia axis acts as an important bridge hub that connects the entire miRNA-gut microbiota network. In addition, we observed that Parabacteroides and Bacillus correlated significantly with several miRNAs, including miR-484, miR-122-5p, miR-184 and miR-378b.Summary:P. kingianum alleviates lipid metabolism disorder by targeting the network of key miRNAs and the gut microbiota.


2021 ◽  
Vol 28 ◽  
Author(s):  
Adel Hajj Ali ◽  
Nour Younis ◽  
Rola Abdallah ◽  
Farah Shaer ◽  
Ali Dakroub ◽  
...  

: Cardiovascular disease (CVD) remains the primary cause of global morbidity and mortality. CVD includes various life-threatening conditions such as myocardial infarction, stroke and peripheral arterial diseases. In this context, atherosclerosis continues to play the principal role in the pathogenesis of these conditions. Atherosclerosis emanates from a set of modifiable and non-modifiable risk factors that include age, male gender, family history, obesity, smoking, diabetes mellitus and hypertension. Recent evidence classifies atherosclerosis as a latent disease affecting all-sized arteries with a predilection for arterial branching points of decreased or absent blood supply. Atherosclerosis is not only a lipid metabolism disorder, but is also a chronic inflammatory one. In this review, we provide a synoptic discussion of the underlying pathological mechanisms of atherosclerosis along with the currently applied therapeutic interventions. We then discuss the classical lipid-lowering therapies as well as the newly discovered therapies. For the classical therapies, we point out the importance of statins and ezetimibe in reducing plasma cholesterol levels by virtue of their effects on synthesis, reuptake and intestinal absorption of cholesterol. We also discuss the role of fibrates in modulating lipid metabolism and improving the ratio of high-density to low-density density lipoproteins. We then focus on the more recent molecular and genetic interventions exemplified by proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies, evinacumab, and microRNA inhibitors. Special attention is also given to clinical trials involving these therapies.


2019 ◽  
Vol 51 (9) ◽  
pp. 890-899
Author(s):  
Xiaoyu Wang ◽  
Jiajie Zhou ◽  
Manlu Shen ◽  
Jiayan Shen ◽  
Xinyue Zhang ◽  
...  

Abstract Chlorpyrifos (CPF) is a widely used insecticide in pest control, and it can affect aquatic animals by contaminating the water. In this study, larval zebrafish were exposed to CPF at concentrations of 30, 100 and 300 μg/l for 7 days. In the CPF-treated group, lipid droplet accumulation was reduced in larval zebrafish. The levels of triglyceride (TG), total cholesterol (TC), and pyruvate were also decreased after CPF exposure. Cellular apoptosis were significantly increased in the heart tissue after CPF exposure compared with the control. Transcription changes in cardiovascular genes were also observed. Through transcriptome analysis, we found that the transcription of 465 genes changed significantly, with 398 upregulated and 67 downregulated in the CPF-treated group, indicating that CPF exposure altered the transcription of genes. Among these altered genes, a number of genes were closely related to the glucose and lipid metabolism pathways. Furthermore, we also confirmed that the transcription of genes related to fatty acid synthesis, TC synthesis, and lipogenesis were significantly decreased in larval zebrafish after exposure to CPF. These results indicated that CPF exposure induced lipid metabolism disorders associated with cardiovascular toxicity in larval zebrafish.


Sign in / Sign up

Export Citation Format

Share Document