Reply to comment by H. Lough, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, on the paper “Stream depletion predictions using pumping test data from a heterogeneous stream–aquifer system (a case study from the Great Plains, USA)” By S.J. Kollet and V.A. Zlotnik, 281: 96–114

2005 ◽  
Vol 313 (3-4) ◽  
pp. 149-152 ◽  
Author(s):  
Stefan J. Kollet ◽  
Vitaly A. Zlotnik
2021 ◽  
Vol 126 ◽  
pp. 104871
Author(s):  
Waleed Saeed ◽  
Orfan Shouakar-Stash ◽  
André Unger ◽  
Warren W. Wood ◽  
Beth Parker

2020 ◽  
Vol 4 (3) ◽  
pp. 35
Author(s):  
Xavier Brioso ◽  
Diego Fuentes Hurtado

El Lean Project Delivery System (LPDS) es un sistema que implementa principios y herramientas Lean en todo el ciclo de vida de un proyecto de construcción. El LPDS es adaptativo pues es flexible para especificar las entradas y salidas de los procesos y tiene la libertad de elegir herramientas, técnicas y tecnologías acorde a las últimas tendencias. El propósito principal de este artículo es presentar un marco de generación de valor a través de la adaptación del LPDS al proceso de revisión de un plan de estudios. Este trabajo adapta el modelo del LPDS al proyecto de elaboración o actualización de un plan de estudios de la especialidad de ingeniería civil, incorporando BIM, realidad virtual y fotogrametría a lo largo de las asignaturas del área de gestión de la construcción. Se incluyen herramientas blandas y competencias tecnológicas que potencian la empleabilidad del egresado. Como estudio de caso se presenta la aplicación del modelo en la Pontificia Universidad Católica del Perú.ABSTRACTLean Project Delivery System (LPDS) is a system that implements Lean principles and tools throughout the life cycle of a construction project. The LPDS is adaptive because it's flexible enough to specify the inputs and outputs of each process and allows the freedom to choose tools, techniques and technologies according to the latest trends. The main purpose of this paper is to present a value-generation framework through the adaptation of the LPDS to the Undergraduate Degree Plan process. This work adapts the LPDS model to the current project, elaboration or updating of the civil engineering curriculum, incorporating BIM, virtual reality and photogrammetry in the construction management area subjects. Soft tools and technological skills are included, and as such, enhancing the employability of the undergraduate. As a case study, the application of the model is presented at the Pontifical Catholic University of Peru.


2005 ◽  
Vol 25 (2) ◽  
pp. 619-634 ◽  
Author(s):  
Martin J. Unwin ◽  
Mark Webb ◽  
Richard J. Barker ◽  
William A. Link

Author(s):  
Sonu Singh ◽  
Joseph Tripura

Abstract Groundwater conditions (GWCs) of an area depends on aquifer hydraulic parameters such as storativity () or storage coefficient (), transmissivity () and hydraulic conductivity (). It plays a key role concerning- groundwater flow modeling, well performance, solute and contaminants transports assessment and also for identification of areas for additional hydrologic testing. Specifically, the geologic formation of a regions control the porosity and permeability, however, in hilly terrain prospecting ground water potential is more challenging due to its limited extent and its occurrences that are usually confined to fractures and weathered rocks. The present study, aims at estimating the hydraulic parameters through pumping test analysis to assess aquifer system formation on hilly terrain from 16 bore wells. The aforesaid parameters were examined through a case study in some selective regions of Hamirpur district of Himachal Pradesh, India. The study area is controlled under two main geological horizons that is the post-tertiary and tertiary. The papers end with comparative results of hydraulic parameters and the aquifers system formation on different GWCs which may be helpful in the outlook of sustainable groundwater resource in the regions.


2020 ◽  
pp. 1-21
Author(s):  
Roberto Clairmont ◽  
Heather Bedle

The Taranaki Basin is well known for studies examining the seismic stratigraphy, depositional and erosional features, and tectonic frameworks linked to the New Zealand (NZ) continent. This particular study examines a “funny looking thing” (FLT) which we associate to be consistent with that of a braided channelized system. We observe this feature within the 3D Nimitz Survey (See Figure 1), located in the Northern Taranaki Basin (NTB) off the western continental coast of North Island, NZ. The FLT occurs within Quaternary deposits of the Whenuakura Formation which are interpreted to reflect shelfal topset sediments (O’Leary et al., 2010). It is underlain by the Giant Foresets Formation (GFF) of Pliocene to Pleistocene age, which are described as large-scale progradational and aggradational continental successions that migrated west to northwest in basinward direction (Anell and Midtkandal, 2017; Clairmont et al., 2020; Hansen and Kamp, 2002; Shumaker et al., 2017) (Figure 2). It comprises a shelf-to-slope succession of claystone to siltstone with argillaceous sandstone intervals defining an overall coarsening upward succession (O’Leary et al., 2010). The FLT within the Whenuakura Formation is characterized by chaotic facies in cross section, which shares characteristics with potential mass wasting events (Figure 3a). However, further analysis using seismic attributes improved the spatial and stratigraphic architecture of the FLT, which favored a complex channelized system interpretation over a mass transport deposit complex.


Sign in / Sign up

Export Citation Format

Share Document