scholarly journals Assessment of the influence of land use data on the water balance components of a peri-urban catchment using a distributed modelling approach

2013 ◽  
Vol 505 ◽  
pp. 312-325 ◽  
Author(s):  
F. Branger ◽  
S. Kermadi ◽  
C. Jacqueminet ◽  
K. Michel ◽  
M. Labbas ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1433
Author(s):  
Navneet Kumar ◽  
Asia Khamzina ◽  
Patrick Knöfel ◽  
John P. A. Lamers ◽  
Bernhard Tischbein

Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land’s productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62% and 100% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km2) in the study region with an average water availability would save 1037 mln m3 of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m3. These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations.


Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 39 ◽  
Author(s):  
Salem S. Gharbia ◽  
Laurence Gill ◽  
Paul Johnston ◽  
Francesco Pilla

Parametrising the spatially distributed dynamic catchment water balance is a critical factor in studying the hydrological system responses to climate and land use changes. This study presents the development of a geographic information system (GIS)-based set of algorithms (geographical spatially distributed water balance model (GEO-CWB)), which is developed from integrating physical, statistical, and machine learning models. The GEO-CWB tool has been developed to simulate and predict future spatially distributed dynamic water balance using GIS environment at the catchment scale in response to the future changes in climate variables and land use through a user-friendly interface. The tool helps in bridging the gap in quantifying the high-resolution dynamic water balance components for the large catchments by reducing the computational costs. Also, this paper presents the application and validation of GEO-CWB on the Shannon catchment in Ireland as an example of a large and complicated hydrological system. It can be concluded that climate and land use changes have significant effects on the spatial and temporal patterns of the different water balance components of the catchment.


2010 ◽  
Vol 5 (No. 4) ◽  
pp. 128-138 ◽  
Author(s):  
P. Kovář ◽  
D. Vaššová

This paper presents results of decadal (10-day) water balance simulations for the vegetation periods (April to October) of 2001 (normal year), 2002 (wet year) and 2003 (dry year) in the Němčick&yacute; Stream experimental catchment (3.52 km<sup>2</sup>). The catchment is a typical agricultural area with a large extent of arable land. This paper shows that the model used (WBCM) is capable of reliably simulating decadal water balance components for the actual land use. The same model is then used to estimate water balance changes brought about when 10% of arable land has been transformed into permanent grassland. It is shown that this land use change results in a pronounced reduction of surface runoff and an increase in subsurface storage over the vegetation periods of all three years. The vegetation period groundwater runoff was only enhanced in the wet year, while the total runoff was reduced in all three years.&nbsp;


2012 ◽  
Vol 26 (23) ◽  
pp. 3579-3592 ◽  
Author(s):  
Guoqiang Wang ◽  
Hong Jiang ◽  
Zongxue Xu ◽  
Lijing Wang ◽  
Weifeng Yue

2007 ◽  
Vol 4 (6) ◽  
pp. 4265-4295 ◽  
Author(s):  
J. Dams ◽  
S. T. Woldeamlak ◽  
O. Batelaan

Abstract. Land-use change and climate change, along with groundwater pumping are frequently indicated to be the main human-induced factors influencing the groundwater system. Up till now, research has mainly been focusing on the effect of the water quality of these human-induced changes on the groundwater system, often neglecting changes in quantity. The focus in this study is on the impact of land-use changes in the near future, from 2000 until 2020, on the groundwater quantity and the general hydrologic balance of a sub-catchment of the Kleine Nete, Belgium. This study tests a new methodology which involves coupling a land-use change model with a water balance model and a groundwater model. The future land-use is modelled with the CLUE-S model. Four scenarios (A1, A2, B1 and B2) based on the Special Report on Emission Scenarios (SRES) are used for the land-use modelling. Water balance components, groundwater level and baseflow are simulated using the WetSpass model in conjunction with a MODFLOW groundwater model. Results show that the average recharge slowly decreases for all scenarios, the decreases are 2.9, 1.6, 1.8 and 0.8% for respectively scenario A1, A2, B1 and B2. The predicted reduction in recharge results in a small decrease of the average groundwater level, ranging from 2.5 cm for scenario A1 to 0.9 cm for scenario B2, and a reduction of the total baseflow with maximum 2.3% and minimum 0.7% respectively for scenario A1 and B2. Although these average values do not indicate significant changes for the groundwater system, spatial analysis of the changes shows the changes are concentrated in the neighbourhood of the major cities in the study areas. It is therefore important for spatial managers to take the groundwater system into account for reducing the negative impacts of land-use and climate change as much as possible.


2018 ◽  
Vol 9 (17) ◽  
pp. 168-181
Author(s):  
narges javidan ◽  
Abdolgreza Bahremand ◽  
rana javidan ◽  
Majid Onagh ◽  
Chooghi Bayram Komaki ◽  
...  

Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Semuel Laimeheriwa

This research was conducted to estimate the values of parameters which described the physical characteristics of catchments area and monthly water balance components, and understand the sensitivity of the water balance components to change in the parameter value due to the physical changes occurring in Way Pia catchments area, Ceram Island.  The method used involved calculation of the regional water balance in the current time (normal) and during the time of land use change, using an evapoclimatonomy model. The main model inputs were monthly rainfall, global radiation and run off. Analyses of data were conducted with five steps as follows : (1) mathematical formulation of the evapoclimatonomy model, (2) algorithm formation and transfer to computer code, (3) establishment of parameters and calibration, (4) validation of model, and (5) experimentation of model. The current physical conditions of Way Pia catchments area were characterized by: average of parameter value of albedo, a = 0,16; rainfall threshold, Pn = 100 mm; surface run off ratio, np = 0,23; evapority, ep = 0,42; measure of soil water loss from sub surface, vN = 0,12; and measure of evapotranspiration of soil water from sub surface, vE = 0,20. Model output of the current water balance consisted of  annual value of soil moisture, m = 272 mm; total evapotranspiration, E = 1393 mm, and total run off, N = 920 mm. The land use change  in the form of land clearing will increase the parameter values of a and np, which affect on increasing of direct run off (N') of 13% as compared to current conditions.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 178
Author(s):  
Muhammad Aslam ◽  
Ali Salem ◽  
Vijay P. Singh ◽  
Muhammad Arshad

Evaluation of the spatial and temporal distribution of water balance components is required for efficient and sustainable management of groundwater resources, especially in semi-arid and data-poor areas. The Khadir canal sub-division, Chaj Doab, Pakistan, is a semi-arid area which has shallow aquifers which are being pumped by a plethora of wells with no effective monitoring. This study employed a monthly water balance model (water and energy transfer among soil, plants, and atmosphere)—WetSpass-M—to determine the groundwater balance components on annual, seasonal, and monthly time scales for a period of the last 20 years (2000–2019) in the Khadir canal sub-division. The spatial distribution of water balance components depends on soil texture, land use, groundwater level, slope, and meteorological conditions. Inputs for the model included data on topography, slope, soil, groundwater depth, slope, land use, and meteorological data (e.g., precipitation, air temperature, potential evapotranspiration, and wind speed) which were prepared using ArcGIS. The long-term average annual rainfall (455.7 mm) is distributed as 231 mm (51%) evapotranspiration, 109.1 mm (24%) surface runoff, and 115.6 mm (25%) groundwater recharge. About 51% of groundwater recharge occurs in summer, 18% in autumn, 14% in winter, and 17% in spring. Results showed that the WetSpass-M model properly simulated the water balance components of the Khadir canal sub-division. The WetSpass-M model’s findings can be used to develop a regional groundwater model for simulation of different aquifer management scenarios in the Khadir area, Pakistan.


2013 ◽  
Vol 10 (10) ◽  
pp. 11983-12026 ◽  
Author(s):  
E. Morán-Tejeda ◽  
J. Zabalza ◽  
K. Rahman ◽  
A. Gago-Silva ◽  
J. I. López-Moreno ◽  
...  

Abstract. This paper evaluates the response of stream flow and other components of the water balance to changes in climate and land-use in a Pyrenean watershed. It further provides a measure of uncertainty in water resources forecasts by comparing the performance of two hydrological models: Soil and Water Assessment Tool (SWAT) and Regional Hydro-Ecological Simulation System (RHESSys). Regional Climate Model outputs for the 2021–2050 time-frame, and hypothetical (but plausible) land-use scenarios considering re-vegetation and wildfire processes were used as inputs to the models. Results indicate an overall decrease in river flows when the scenarios are considered, except for the post-fire vegetation scenario, in which stream flows are simulated to increase. However the magnitude of these projections varies between the two models used, as SWAT tends to produce larger hydrological changes under climate change scenarios, and RHESSys shows more sensitivity to changes in land-cover. The final prediction will therefore depend largely on the combination of the land-use and climate scenarios, and on the model utilized.


Sign in / Sign up

Export Citation Format

Share Document