Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes

2014 ◽  
Vol 519 ◽  
pp. 3086-3093 ◽  
Author(s):  
Fei Yang ◽  
Gan-Lin Zhang ◽  
Jin-Ling Yang ◽  
De-Cheng Li ◽  
Yu-Guo Zhao ◽  
...  
2020 ◽  
pp. 1-10
Author(s):  
Clara Roa García ◽  
Sandra Brown ◽  
Maja Krzic ◽  
Les Lavkulich ◽  
María Cecilia Roa-García

Differences in soil water retention (SWR) characteristics between soil types and the factors driving those differences provide important information for land management, particularly in regions such as the Colombian Andes, which have limited water-storage infrastructure and where soils provide plant-available water and other ecosystem services. The objective of this study was to explore relationships between SWR and physical, chemical, and mineralogical properties of Andisols and Inceptisols through a case study of two watersheds in the Colombian Andes. This study identified a complex relationship between total carbon (TC), short-range order (SRO) minerals, and SWR. Both soil types had high SWR, with volumetric water content at permanent wilting point between 39% and 53%. Principal component analysis showed association of SWR with TC, SRO minerals, and % clay in both soil types. The Andisols of this study were coarse textured, allophanic (rich in allophane and imogolite — up to 17% in the B horizon), and with up to 15% TC in the A horizon. In contrast, the Inceptisols were fine textured (>30% clay) and higher in ferrihydrite than the Andisols. The formation of organo-metallic complexes was observed in A horizons; however, TC was lower under pasture than forest in both soil types. The addition of organic matter to soils with SRO minerals, such as the soils of this study, may foster the formation of organo-metallic complexes, stabilize soil C, and enhance SWR. Consequently, both study sites may benefit from management practices that increase soil organic matter.


1983 ◽  
Vol 63 (2) ◽  
pp. 291-302 ◽  
Author(s):  
R. DE JONG ◽  
C. A. CAMPBELL ◽  
W. NICHOLAICHUK

Functional relationships between soil water content and water suction were examined and related to textural and organic carbon content data. Soil water retention curves between 5 and 10 000 kPa were determined on disturbed samples of 18 soils representing various soil Great Groups in the Canadian prairies. The best fit was obtained with a two-straight-line regression model. Correlation and regression analysis showed that texture was the main soil property influencing the shape and position of the water retention curve. Organic matter influenced primarily the water content at which a break in the curve occurred. Soil zone and cultivation history had little effect on water retention. Key words: Water retention, texture, organic matter, two-straight-line regression


2020 ◽  
Author(s):  
Teamrat Ghezzehei ◽  
Jennifer Alvarez ◽  
Yocelyn Villa ◽  
Rebecca Ryals

<p>The dynamics of soil organic matter is strongly controlled by the hydrophysical environmental factors, including motility, aqueous diffusivity of substrates, gaseous diffusivity, and energetic constraints on microbial physiology. The relationships among these physical factors depend on soil moisture and the architecture of the soil pores. In this regard, the soil water retention curve can serve as a macroscopic signature of pore-size distribution. Therefore, the sensitivity of aerobic and anaerobic microbial activity must be closely associated with the shape of the soil water retention curve. The soil water retention curve is, in turn, strongly dependent on soil texture and structure. Here, we present a physically-based model of aerobic and anaerobic microbial respiration rates. We also present a novel experimental technique for the characterization of the soil-moisture sensitivity of soil microbial activity. The proposed experimental and modeling approaches allow direct coupling of the fate soil organic matter with the nature of soil structure.</p>


1985 ◽  
Vol 65 (1) ◽  
pp. 233-236 ◽  
Author(s):  
G. J. BEKE ◽  
M. I. MacCORMICK

Relationships between soil water retention and soil properties were developed for subsoil materials from Colchester County, Nova Scotia. The significant variables in the regression equation for soil water content at a suction of 33 kPa were the sand content and the product of silt content and bulk density of the soil. The variables for water retention at 1500 kPa suction were the clay content and the product of organic matter content and bulk density. The multiple correlation coefficients were 0.87 and 0.92 for suctions of 33 and 1500 kPa, respectively. The developed equations were comparable to ones derived elsewhere. Key words: Water retention, texture, organic matter, bulk density


Sign in / Sign up

Export Citation Format

Share Document