Identification of changes in subsurface temperature and groundwater flow after the 2016 Kumamoto earthquake using long-term well temperature–depth profiles

2020 ◽  
Vol 582 ◽  
pp. 124530 ◽  
Author(s):  
Akinobu Miyakoshi ◽  
Makoto Taniguchi ◽  
Kiyoshi Ide ◽  
Makoto Kagabu ◽  
Takahiro Hosono ◽  
...  
Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Linyao Dong ◽  
Congsheng Fu ◽  
Jigen Liu ◽  
Yifeng Wang

Subsurface temperatures depend on climate and groundwater flow. A lack of observations of subsurface temperature collected over decades limits interpretation of the combined influences of surface warming and groundwater flow on subsurface thermal regimes. Subsurface temperature-depth profile data acquired for Kumamoto Plain, Japan, between 1987 and 2012 were collected and analyzed to elucidate regional groundwater and heat flows. The observed and simulated temperature-depth profiles showed the following: subsurface water flows from northeast to southwest in the study area; the combined influence of surface warming and water flow perturbation produces different temporal changes in thermal profiles in recharge, intermediate, and discharge areas; and aquifer thermal properties contribute more than hydraulic parameters to the perturbation of temperature-depth profiles. Spatial and temporal evolution features of subsurface thermal regimes may be utilized to investigate the influence of surface warming events on subsurface water and heat flows at the basin scale.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Yasuhira Aoyagi ◽  
Haruo Kimura ◽  
Kazuo Mizoguchi

Abstract The earthquake rupture termination mechanism and size of the ruptured area are crucial parameters for earthquake magnitude estimations and seismic hazard assessments. The 2016 Mw 7.0 Kumamoto Earthquake, central Kyushu, Japan, ruptured a 34-km-long area along previously recognized active faults, eastern part of the Futagawa fault zone and northernmost part of the Hinagu fault zone. Many researchers have suggested that a magma chamber under Aso Volcano terminated the eastward rupture. However, the termination mechanism of the southward rupture has remained unclear. Here, we conduct a local seismic tomographic inversion using a dense temporary seismic network to detail the seismic velocity structure around the southern termination of the rupture. The compressional-wave velocity (Vp) results and compressional- to shear-wave velocity (Vp/Vs) structure indicate several E–W- and ENE–WSW-trending zonal anomalies in the upper to middle crust. These zonal anomalies may reflect regional geological structures that follow the same trends as the Oita–Kumamoto Tectonic Line and Usuki–Yatsushiro Tectonic Line. While the 2016 Kumamoto Earthquake rupture mainly propagated through a low-Vp/Vs area (1.62–1.74) along the Hinagu fault zone, the southern termination of the earthquake at the focal depth of the mainshock is adjacent to a 3-km-diameter high-Vp/Vs body. There is a rapid 5-km step in the depth of the seismogenic layer across the E–W-trending velocity boundary between the low- and high-Vp/Vs areas that corresponds well with the Rokkoku Tectonic Line; this geological boundary is the likely cause of the dislocation of the seismogenic layer because it is intruded by serpentinite veins. A possible factor in the southern rupture termination of the 2016 Kumamoto Earthquake is the existence of a high-Vp/Vs body in the direction of southern rupture propagation. The provided details of this inhomogeneous barrier, which are inferred from the seismic velocity structures, may improve future seismic hazard assessments for a complex fault system composed of multiple segments.


Sign in / Sign up

Export Citation Format

Share Document