scholarly journals Streamflow prediction in “geopolitically ungauged” basins using satellite observations and regionalization at subcontinental scale

2020 ◽  
Vol 588 ◽  
pp. 125016
Author(s):  
Tien L.T. Du ◽  
Hyongki Lee ◽  
Duong D. Bui ◽  
Berit Arheimer ◽  
Hong-Yi Li ◽  
...  
2011 ◽  
Vol 8 (1) ◽  
pp. 391-427 ◽  
Author(s):  
M. Di Prinzio ◽  
A. Castellarin ◽  
E. Toth

Abstract. Objective criteria for catchment classification are identified by the scientific community among the key research topics for improving the interpretation and representation of the spatiotemporal variability of streamflow. A promising approach to catchment classification makes use of unsupervised neural networks (Self Organising Maps, SOM's), which organise input data through non-linear techniques depending on the intrinsic similarity of the data themselves. Our study considers ~300 Italian catchments scattered nationwide, for which several descriptors of the streamflow regime and geomorphoclimatic characteristics are available. We qualitatively and quantitatively compare in the context of PUB (Prediction in Ungauged Basins) a reference classification, RC, with four alternative classifications, AC's. RC was identified by using indices of the streamflow regime as input to SOM, whereas AC's were identified on the basis of catchment descriptors that can be derived for ungauged basins. One AC directly adopts the available catchment descriptors as input to SOM. The remaining AC's are identified by applying SOM to two sets of derived variables obtained by applying Principal Component Analysis (PCA, second AC) and Canonical Correlation Analysis (CCA, third and fourth ACs) to the available catchment descriptors. First, we measure the similarity between each AC and RC. Second, we use AC's and RC to regionalize several streamflow indices and we compare AC's with RC in terms of accuracy of streamflow prediction. In particular, we perform an extensive cross-validation to quantify nationwide the accuracy of predictions in ungauged basins of mean annual runoff, mean annual flood, and flood quantiles associated with given exceedance probabilities. Results of the study show that CCA can significantly improve the effectiveness of SOM classifications for the PUB problem.


2015 ◽  
Vol 47 (5) ◽  
pp. 1053-1068 ◽  
Author(s):  
Jiyun Song ◽  
Jun Xia ◽  
Liping Zhang ◽  
Zhi-Hua Wang ◽  
Hui Wan ◽  
...  

Streamflow information is of great significance for flood control, water resources utilization and management, ecological services, etc. Continuous streamflow prediction in ungauged basins remains a challenge, mainly due to data paucity and environmental changes. This study focuses on the modification of a nonlinear hydrological system approach known as the time variant gain model and the development of a regressive method based on the modified approach. This method directly correlates rainfall to runoff through physically based mathematical transformations without requiring additional information of evaporation or soil moisture. Also, it contains parsimonious parameters that can be derived from watershed properties. Both characteristics make this method suitable for practical uses in ungauged basins. The Huai River Basin of China was selected as the study area to test the regressive method. The results show that the proposed methodology provides an effective way to predict streamflow of ungauged basins with reasonable accuracy by incorporating regional watershed information (soil, land use, topography, etc.). This study provides a useful predictive tool for future water resources utilization and management for data-sparse areas or watersheds with environmental changes.


2020 ◽  
Vol 163 ◽  
pp. 01001
Author(s):  
Georgy Ayzel ◽  
Liubov Kurochkina ◽  
Eduard Kazakov ◽  
Sergei Zhuravlev

Streamflow prediction is a vital public service that helps to establish flash-flood early warning systems or assess the impact of projected climate change on water management. However, the availability of streamflow observations limits the utilization of the state-of-the-art streamflow prediction techniques to the basins where hydrometric gauging stations exist. Since the most river basins in the world are ungauged, the development of the specialized techniques for the reliable streamflow prediction in ungauged basins (PUB) is of crucial importance. In recent years, the emerging field of deep learning provides a myriad of new models that can breathe new life into the stagnating PUB methods. In the presented study, we benchmark the streamflow prediction efficiency of Long Short-Term Memory (LSTM) networks against the standard technique of GR4J hydrological model parameters regionalization (HMREG) at 200 basins in Northwest Russia. Results show that the LSTM-based regional hydrological model significantly outperforms the HMREG scheme in terms of median Nash-Sutcliffe efficiency (NSE), which is 0.73 and 0.61 for LSTM and HMREG, respectively. Moreover, LSTM demonstrates the comparable median NSE with that for basin-scale calibration of GR4J (0.75). Therefore, this study underlines the high utilization potential of deep learning for the PUB by demonstrating the new state-of-the-art performance in this field.


2019 ◽  
Vol 64 (11) ◽  
pp. 1297-1311 ◽  
Author(s):  
Richard Arsenault ◽  
Mélissa Breton-Dufour ◽  
Annie Poulin ◽  
Gabrielle Dallaire ◽  
Rabindranarth Romero-Lopez

2010 ◽  
Vol 7 (3) ◽  
pp. 3803-3836 ◽  
Author(s):  
◽  
◽  

Abstract. Rainfall-runoff models are common tools for river discharge estimation in the field of hydrology. In ungauged basins, the dependence on observed river discharge data for calibration restricts applications of rainfall-runoff models. The strong correlation between quantities of river cross-sectional water surface width obtained from remote sensing and corresponding in situ gauged river discharge has been verified by many researchers. In this study, a calibration scheme of rainfall-runoff models based on satellite observations of river width at basin outlet is illustrated. One distinct advantage is that this calibration is independent of river discharge information. The at-a-station hydraulic geometry is implemented to facilitate shifting calibration objective from river discharge to river width. The generalized likelihood uncertainty estimation methodology is applied to model calibration and uncertainty analysis. The calibration scheme is demonstrated through a case study for simulating river discharge at Pakse in the Mekong Basin. The effectiveness of calibration scheme and uncertainties associated with utilization of river width observations from space are examined from model input-state-output behaviour, capability of reproducing river discharge, and posterior parameter distribution. The results indicate that the satellite observation of river width is a competent surrogate of observed discharge for the calibration of rainfall-runoff model at Pakse and the proposed method has the potential for improving reliability of river discharge estimation in basins without any discharge gauging.


2020 ◽  
Vol 56 (9) ◽  
Author(s):  
Zhongying Han ◽  
Di Long ◽  
Qi Huang ◽  
Xingdong Li ◽  
Fanyu Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document