Streamflow Prediction in Ungauged Basins: Review of Regionalization Methods

2013 ◽  
Vol 18 (8) ◽  
pp. 958-975 ◽  
Author(s):  
Tara Razavi ◽  
Paulin Coulibaly
2011 ◽  
Vol 8 (1) ◽  
pp. 391-427 ◽  
Author(s):  
M. Di Prinzio ◽  
A. Castellarin ◽  
E. Toth

Abstract. Objective criteria for catchment classification are identified by the scientific community among the key research topics for improving the interpretation and representation of the spatiotemporal variability of streamflow. A promising approach to catchment classification makes use of unsupervised neural networks (Self Organising Maps, SOM's), which organise input data through non-linear techniques depending on the intrinsic similarity of the data themselves. Our study considers ~300 Italian catchments scattered nationwide, for which several descriptors of the streamflow regime and geomorphoclimatic characteristics are available. We qualitatively and quantitatively compare in the context of PUB (Prediction in Ungauged Basins) a reference classification, RC, with four alternative classifications, AC's. RC was identified by using indices of the streamflow regime as input to SOM, whereas AC's were identified on the basis of catchment descriptors that can be derived for ungauged basins. One AC directly adopts the available catchment descriptors as input to SOM. The remaining AC's are identified by applying SOM to two sets of derived variables obtained by applying Principal Component Analysis (PCA, second AC) and Canonical Correlation Analysis (CCA, third and fourth ACs) to the available catchment descriptors. First, we measure the similarity between each AC and RC. Second, we use AC's and RC to regionalize several streamflow indices and we compare AC's with RC in terms of accuracy of streamflow prediction. In particular, we perform an extensive cross-validation to quantify nationwide the accuracy of predictions in ungauged basins of mean annual runoff, mean annual flood, and flood quantiles associated with given exceedance probabilities. Results of the study show that CCA can significantly improve the effectiveness of SOM classifications for the PUB problem.


2015 ◽  
Vol 47 (5) ◽  
pp. 1053-1068 ◽  
Author(s):  
Jiyun Song ◽  
Jun Xia ◽  
Liping Zhang ◽  
Zhi-Hua Wang ◽  
Hui Wan ◽  
...  

Streamflow information is of great significance for flood control, water resources utilization and management, ecological services, etc. Continuous streamflow prediction in ungauged basins remains a challenge, mainly due to data paucity and environmental changes. This study focuses on the modification of a nonlinear hydrological system approach known as the time variant gain model and the development of a regressive method based on the modified approach. This method directly correlates rainfall to runoff through physically based mathematical transformations without requiring additional information of evaporation or soil moisture. Also, it contains parsimonious parameters that can be derived from watershed properties. Both characteristics make this method suitable for practical uses in ungauged basins. The Huai River Basin of China was selected as the study area to test the regressive method. The results show that the proposed methodology provides an effective way to predict streamflow of ungauged basins with reasonable accuracy by incorporating regional watershed information (soil, land use, topography, etc.). This study provides a useful predictive tool for future water resources utilization and management for data-sparse areas or watersheds with environmental changes.


2020 ◽  
Vol 163 ◽  
pp. 01001
Author(s):  
Georgy Ayzel ◽  
Liubov Kurochkina ◽  
Eduard Kazakov ◽  
Sergei Zhuravlev

Streamflow prediction is a vital public service that helps to establish flash-flood early warning systems or assess the impact of projected climate change on water management. However, the availability of streamflow observations limits the utilization of the state-of-the-art streamflow prediction techniques to the basins where hydrometric gauging stations exist. Since the most river basins in the world are ungauged, the development of the specialized techniques for the reliable streamflow prediction in ungauged basins (PUB) is of crucial importance. In recent years, the emerging field of deep learning provides a myriad of new models that can breathe new life into the stagnating PUB methods. In the presented study, we benchmark the streamflow prediction efficiency of Long Short-Term Memory (LSTM) networks against the standard technique of GR4J hydrological model parameters regionalization (HMREG) at 200 basins in Northwest Russia. Results show that the LSTM-based regional hydrological model significantly outperforms the HMREG scheme in terms of median Nash-Sutcliffe efficiency (NSE), which is 0.73 and 0.61 for LSTM and HMREG, respectively. Moreover, LSTM demonstrates the comparable median NSE with that for basin-scale calibration of GR4J (0.75). Therefore, this study underlines the high utilization potential of deep learning for the PUB by demonstrating the new state-of-the-art performance in this field.


2019 ◽  
Vol 64 (11) ◽  
pp. 1297-1311 ◽  
Author(s):  
Richard Arsenault ◽  
Mélissa Breton-Dufour ◽  
Annie Poulin ◽  
Gabrielle Dallaire ◽  
Rabindranarth Romero-Lopez

2013 ◽  
Vol 46 (2) ◽  
pp. 291-302 ◽  
Author(s):  
A. de Lavenne ◽  
H. Boudhraâ ◽  
C. Cudennec

Geomorphology-based rainfall–runoff models are particularly helpful for predicting hydrology in ungauged basins. The robustness, generality and flexibility of the modelling approach make it able to deal with a wide variety of processes, events and scales. It allows a rainfall–runoff transfer function to be estimated for any basin without needing to measure discharge. The aim of this study is to transpose hydrological observations from gauged to ungauged basins to predict streamflow hydrographs. It considers pairs of nested and neighbouring basins, the first one providing information for the second ungauged one. A time-series of the donor basin's discharge is deconvoluted by inverting its geomorphology-based transfer function to assess the time-series of net rainfall. The latter is then transposed to the receiver basin, where it is convoluted with the reciever basin's transfer function to predict the hydrograph therein. The methodology was implemented with virtual and real rainfall–runoff events on a set of basins in temperate Brittany, France. Different time scales and spatial configurations were tested. Goodness-of-fit of model predictions varied by basin pair. High prediction accuracy was observed when transposing hydrographs between nested basins differing greatly in size. Several ways to improve the approach are identified by relaxing simplifying assumptions.


2020 ◽  
Vol 588 ◽  
pp. 125016
Author(s):  
Tien L.T. Du ◽  
Hyongki Lee ◽  
Duong D. Bui ◽  
Berit Arheimer ◽  
Hong-Yi Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document